sharplib/Utilities.cs
2019-06-26 00:51:19 -07:00

824 lines
31 KiB
C#

// Copyright (c) Xenko contributors (https://xenko.com) and Silicon Studio Corp. (https://www.siliconstudio.co.jp)
// Distributed under the MIT license. See the LICENSE.md file in the project root for more information.
//
// Copyright (c) 2010-2012 SharpDX - Alexandre Mutel
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#pragma warning disable SA1405 // Debug.Assert must provide message text
using att;
using System;
using System.Collections;
using System.Collections.Generic;
using System.Diagnostics;
using System.IO;
using System.Linq;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Security;
using System.Text;
using System.Threading;
namespace lib
{
/// <summary>
/// Utility class.
/// </summary>
public static class Util
{
/*
#if XENKO_PLATFORM_UWP
public static unsafe void CopyMemory(IntPtr dest, IntPtr src, int sizeInBytesToCopy)
{
Interop.memcpy((void*)dest, (void*)src, sizeInBytesToCopy);
}
#else
#if XENKO_PLATFORM_WINDOWS_DESKTOP
private const string MemcpyDll = "msvcrt.dll";
#elif XENKO_PLATFORM_ANDROID
private const string MemcpyDll = "libc.so";
#elif XENKO_PLATFORM_UNIX
// We do not specifiy the .so extension as libc.so on Linux
// is actually not a .so files but a script. Using just libc
// will automatically find the corresponding .so.
private const string MemcpyDll = "libc";
#elif XENKO_PLATFORM_IOS
private const string MemcpyDll = ObjCRuntime.Constants.SystemLibrary;
#else
# error Unsupported platform
#endif
[DllImport(MemcpyDll, EntryPoint = "memcpy", CallingConvention = CallingConvention.Cdecl, SetLastError = false)]
#if !XENKO_RUNTIME_CORECLR
[SuppressUnmanagedCodeSecurity]
#endif
private static extern IntPtr CopyMemory(IntPtr dest, IntPtr src, ulong sizeInBytesToCopy);
/// <summary>
/// Copy memory.
/// </summary>
/// <param name="dest">The destination memory location</param>
/// <param name="src">The source memory location.</param>
/// <param name="sizeInBytesToCopy">The count.</param>
public static void CopyMemory(IntPtr dest, IntPtr src, int sizeInBytesToCopy)
{
CopyMemory(dest, src, (ulong)sizeInBytesToCopy);
}
#endif
*/
/// <summary>
/// Compares two block of memory.
/// </summary>
/// <param name="from">The pointer to compare from.</param>
/// <param name="against">The pointer to compare against.</param>
/// <param name="sizeToCompare">The size in bytes to compare.</param>
/// <returns>True if the buffers are equivalent, false otherwise.</returns>
public static unsafe bool CompareMemory(IntPtr from, IntPtr against, int sizeToCompare)
{
var pSrc = (byte*)from;
var pDst = (byte*)against;
// Compare 8 bytes.
var numberOf = sizeToCompare >> 3;
while (numberOf > 0)
{
if (*(long*)pSrc != *(long*)pDst)
return false;
pSrc += 8;
pDst += 8;
numberOf--;
}
// Compare remaining bytes.
numberOf = sizeToCompare & 7;
while (numberOf > 0)
{
if (*pSrc != *pDst)
return false;
pSrc++;
pDst++;
numberOf--;
}
return true;
}
/// <summary>
/// Clears the memory.
/// </summary>
/// <param name="dest">The dest.</param>
/// <param name="value">The value.</param>
/// <param name="sizeInBytesToClear">The size in bytes to clear.</param>
public static void ClearMemory(IntPtr dest, byte value, int sizeInBytesToClear)
{
unsafe
{
Interop.memset((void*)dest, value, sizeInBytesToClear);
}
}
/// <summary>
/// Return the sizeof a struct from a CLR. Equivalent to sizeof operator but works on generics too.
/// </summary>
/// <typeparam name="T">a struct to evaluate</typeparam>
/// <returns>sizeof this struct</returns>
public static int SizeOf<T>() where T : struct
{
return Interop.SizeOf<T>();
}
/// <summary>
/// Return the sizeof an array of struct. Equivalent to sizeof operator but works on generics too.
/// </summary>
/// <typeparam name="T">a struct</typeparam>
/// <param name="array">The array of struct to evaluate.</param>
/// <returns>sizeof in bytes of this array of struct</returns>
public static int SizeOf<T>(T[] array) where T : struct
{
return array == null ? 0 : array.Length * Interop.SizeOf<T>();
}
/// <summary>
/// Pins the specified source and call an action with the pinned pointer.
/// </summary>
/// <typeparam name="T">The type of the structure to pin</typeparam>
/// <param name="source">The source.</param>
/// <param name="pinAction">The pin action to perform on the pinned pointer.</param>
public static void Pin<T>(ref T source, Action<IntPtr> pinAction) where T : struct
{
unsafe
{
pinAction((IntPtr)Interop.Fixed(ref source));
}
}
/// <summary>
/// Pins the specified source and call an action with the pinned pointer.
/// </summary>
/// <typeparam name="T">The type of the structure to pin</typeparam>
/// <param name="source">The source array.</param>
/// <param name="pinAction">The pin action to perform on the pinned pointer.</param>
public static void Pin<T>(T[] source, [NotNull] Action<IntPtr> pinAction) where T : struct
{
unsafe
{
pinAction(source == null ? IntPtr.Zero : (IntPtr)Interop.Fixed(source));
}
}
/// <summary>
/// Covnerts a structured array to an equivalent byte array.
/// </summary>
/// <param name="source">The source.</param>
/// <returns>The byte array.</returns>
public static byte[] ToByteArray<T>(T[] source) where T : struct
{
if (source == null) return null;
var buffer = new byte[SizeOf<T>() * source.Length];
if (source.Length == 0)
return buffer;
unsafe
{
fixed (void* pBuffer = buffer)
Interop.Write(pBuffer, source, 0, source.Length);
}
return buffer;
}
/// <summary>
/// Reads the specified T data from a memory location.
/// </summary>
/// <typeparam name="T">Type of a data to read</typeparam>
/// <param name="source">Memory location to read from.</param>
/// <returns>The data read from the memory location</returns>
public static T Read<T>(IntPtr source) where T : struct
{
unsafe
{
return Interop.ReadInline<T>((void*)source);
}
}
/// <summary>
/// Reads the specified T data from a memory location.
/// </summary>
/// <typeparam name="T">Type of a data to read</typeparam>
/// <param name="source">Memory location to read from.</param>
/// <param name="data">The data write to.</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static void Read<T>(IntPtr source, ref T data) where T : struct
{
unsafe
{
Interop.CopyInline(ref data, (void*)source);
}
}
/// <summary>
/// Reads the specified T data from a memory location.
/// </summary>
/// <typeparam name="T">Type of a data to read</typeparam>
/// <param name="source">Memory location to read from.</param>
/// <param name="data">The data write to.</param>
public static void ReadOut<T>(IntPtr source, out T data) where T : struct
{
unsafe
{
Interop.CopyInlineOut(out data, (void*)source);
}
}
/// <summary>
/// Reads the specified T data from a memory location.
/// </summary>
/// <typeparam name="T">Type of a data to read</typeparam>
/// <param name="source">Memory location to read from.</param>
/// <param name="data">The data write to.</param>
/// <returns>source pointer + sizeof(T)</returns>
public static IntPtr ReadAndPosition<T>(IntPtr source, ref T data) where T : struct
{
unsafe
{
return (IntPtr)Interop.Read((void*)source, ref data);
}
}
/// <summary>
/// Reads the specified array T[] data from a memory location.
/// </summary>
/// <typeparam name="T">Type of a data to read</typeparam>
/// <param name="source">Memory location to read from.</param>
/// <param name="data">The data write to.</param>
/// <param name="offset">The offset in the array to write to.</param>
/// <param name="count">The number of T element to read from the memory location</param>
/// <returns>source pointer + sizeof(T) * count</returns>
public static IntPtr Read<T>(IntPtr source, T[] data, int offset, int count) where T : struct
{
unsafe
{
return (IntPtr)Interop.Read((void*)source, data, offset, count);
}
}
/// <summary>
/// Writes the specified T data to a memory location.
/// </summary>
/// <typeparam name="T">Type of a data to write</typeparam>
/// <param name="destination">Memory location to write to.</param>
/// <param name="data">The data to write.</param>
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public static void Write<T>(IntPtr destination, ref T data) where T : struct
{
unsafe
{
Interop.CopyInline((void*)destination, ref data);
}
}
/// <summary>
/// Writes the specified T data to a memory location.
/// </summary>
/// <typeparam name="T">Type of a data to write</typeparam>
/// <param name="destination">Memory location to write to.</param>
/// <param name="data">The data to write.</param>
/// <returns>destination pointer + sizeof(T)</returns>
public static IntPtr WriteAndPosition<T>(IntPtr destination, ref T data) where T : struct
{
unsafe
{
return (IntPtr)Interop.Write((void*)destination, ref data);
}
}
/// <summary>
/// Writes the specified array T[] data to a memory location.
/// </summary>
/// <typeparam name="T">Type of a data to write</typeparam>
/// <param name="destination">Memory location to write to.</param>
/// <param name="data">The array of T data to write.</param>
/// <param name="offset">The offset in the array to read from.</param>
/// <param name="count">The number of T element to write to the memory location</param>
public static void Write<T>(byte[] destination, T[] data, int offset, int count) where T : struct
{
unsafe
{
fixed (void* pDest = destination)
{
Write((IntPtr)pDest, data, offset, count);
}
}
}
/// <summary>
/// Writes the specified array T[] data to a memory location.
/// </summary>
/// <typeparam name="T">Type of a data to write</typeparam>
/// <param name="destination">Memory location to write to.</param>
/// <param name="data">The array of T data to write.</param>
/// <param name="offset">The offset in the array to read from.</param>
/// <param name="count">The number of T element to write to the memory location</param>
/// <returns>destination pointer + sizeof(T) * count</returns>
public static IntPtr Write<T>(IntPtr destination, T[] data, int offset, int count) where T : struct
{
unsafe
{
return (IntPtr)Interop.Write((void*)destination, data, offset, count);
}
}
/// <summary>
/// Allocate an aligned memory buffer.
/// </summary>
/// <param name="sizeInBytes">Size of the buffer to allocate.</param>
/// <param name="align">Alignment, a positive value which is a power of 2. 16 bytes by default.</param>
/// <returns>A pointer to a buffer aligned.</returns>
/// <remarks>
/// To free this buffer, call <see cref="FreeMemory"/>
/// </remarks>
public static unsafe IntPtr AllocateMemory(int sizeInBytes, int align = 16)
{
var mask = align - 1;
if ((align & mask) != 0)
{
throw new ArgumentException("Alignment is not power of 2", nameof(align));
}
var memPtr = Marshal.AllocHGlobal(sizeInBytes + mask + sizeof(void*));
var ptr = (byte*)((ulong)(memPtr.ToInt32() + sizeof(void*) + mask) & ~(ulong)mask);
((IntPtr*)ptr)[-1] = memPtr;
return new IntPtr(ptr);
}
/// <summary>
/// Allocate an aligned memory buffer and clear it with a specified value (0 by defaault).
/// </summary>
/// <param name="sizeInBytes">Size of the buffer to allocate.</param>
/// <param name="clearValue">Default value used to clear the buffer.</param>
/// <param name="align">Alignment, 16 bytes by default.</param>
/// <returns>A pointer to a buffer aligned.</returns>
/// <remarks>
/// To free this buffer, call <see cref="FreeMemory"/>
/// </remarks>
public static IntPtr AllocateClearedMemory(int sizeInBytes, byte clearValue = 0, int align = 16)
{
var ptr = AllocateMemory(sizeInBytes, align);
ClearMemory(ptr, clearValue, sizeInBytes);
return ptr;
}
/// <summary>
/// Determines whether the specified memory pointer is aligned in memory.
/// </summary>
/// <param name="memoryPtr">The memory pointer.</param>
/// <param name="align">The align.</param>
/// <returns><c>true</c> if the specified memory pointer is aligned in memory; otherwise, <c>false</c>.</returns>
public static bool IsMemoryAligned(IntPtr memoryPtr, int align = 16)
{
return (memoryPtr.ToInt64() & (align - 1)) == 0;
}
/// <summary>
/// Allocate an aligned memory buffer.
/// </summary>
/// <remarks>
/// The buffer must have been allocated with <see cref="AllocateMemory"/>
/// </remarks>
public static unsafe void FreeMemory(IntPtr alignedBuffer)
{
Marshal.FreeHGlobal(((IntPtr*)alignedBuffer)[-1]);
}
/// <summary>
/// If non-null, disposes the specified object and set it to null, otherwise do nothing.
/// </summary>
/// <param name="disposable">The disposable.</param>
public static void Dispose<T>(ref T disposable) where T : class, IDisposable
{
if (disposable != null)
{
disposable.Dispose();
disposable = null;
}
}
/// <summary>
/// String helper join method to display an array of object as a single string.
/// </summary>
/// <param name="separator">The separator.</param>
/// <param name="array">The array.</param>
/// <returns>a string with array elements serparated by the seperator</returns>
[NotNull]
public static string Join<T>(string separator, T[] array)
{
var text = new StringBuilder();
if (array != null)
{
for (var i = 0; i < array.Length; i++)
{
if (i > 0) text.Append(separator);
text.Append(array[i]);
}
}
return text.ToString();
}
/// <summary>
/// String helper join method to display an enumrable of object as a single string.
/// </summary>
/// <param name="separator">The separator.</param>
/// <param name="elements">The enumerable.</param>
/// <returns>a string with array elements serparated by the seperator</returns>
[NotNull]
public static string Join(string separator, [NotNull] IEnumerable elements)
{
var elementList = new List<string>();
foreach (var element in elements)
elementList.Add(element.ToString());
var text = new StringBuilder();
for (var i = 0; i < elementList.Count; i++)
{
var element = elementList[i];
if (i > 0) text.Append(separator);
text.Append(element);
}
return text.ToString();
}
/// <summary>
/// String helper join method to display an enumrable of object as a single string.
/// </summary>
/// <param name="separator">The separator.</param>
/// <param name="elements">The enumerable.</param>
/// <returns>a string with array elements serparated by the seperator</returns>
[NotNull]
public static string Join(string separator, [NotNull] IEnumerator elements)
{
var elementList = new List<string>();
while (elements.MoveNext())
elementList.Add(elements.Current.ToString());
var text = new StringBuilder();
for (var i = 0; i < elementList.Count; i++)
{
var element = elementList[i];
if (i > 0) text.Append(separator);
text.Append(element);
}
return text.ToString();
}
/// <summary>
/// Read stream to a byte[] buffer
/// </summary>
/// <param name = "stream">input stream</param>
/// <returns>a byte[] buffer</returns>
[NotNull]
public static byte[] ReadStream([NotNull] Stream stream)
{
var readLength = 0;
return ReadStream(stream, ref readLength);
}
/// <summary>
/// Read stream to a byte[] buffer
/// </summary>
/// <param name = "stream">input stream</param>
/// <param name = "readLength">length to read</param>
/// <returns>a byte[] buffer</returns>
[NotNull]
public static byte[] ReadStream([NotNull] Stream stream, ref int readLength)
{
System.Diagnostics.Debug.Assert(stream != null);
System.Diagnostics.Debug.Assert(stream.CanRead);
var num = readLength;
System.Diagnostics.Debug.Assert(num <= (stream.Length - stream.Position));
if (num == 0)
readLength = (int)(stream.Length - stream.Position);
num = readLength;
System.Diagnostics.Debug.Assert(num >= 0);
if (num == 0)
return new byte[0];
var buffer = new byte[num];
var bytesRead = 0;
if (num > 0)
{
do
{
bytesRead += stream.Read(buffer, bytesRead, readLength - bytesRead);
} while (bytesRead < readLength);
}
return buffer;
}
/// <summary>
/// Computes a hashcode for a dictionary.
/// </summary>
/// <returns>Hashcode for the list.</returns>
public static int GetHashCode(IDictionary dict)
{
if (dict == null)
return 0;
var hashCode = 0;
foreach (DictionaryEntry keyValue in dict)
{
hashCode = (hashCode * 397) ^ keyValue.Key.GetHashCode();
hashCode = (hashCode * 397) ^ (keyValue.Value?.GetHashCode() ?? 0);
}
return hashCode;
}
/// <summary>
/// Computes a hashcode for an enumeration
/// </summary>
/// <param name="it">An enumerator.</param>
/// <returns>Hashcode for the list.</returns>
public static int GetHashCode(IEnumerable it)
{
if (it == null)
return 0;
var hashCode = 0;
foreach (var current in it)
{
hashCode = (hashCode * 397) ^ (current?.GetHashCode() ?? 0);
}
return hashCode;
}
/// <summary>
/// Computes a hashcode for an enumeration
/// </summary>
/// <param name="it">An enumerator.</param>
/// <returns>Hashcode for the list.</returns>
public static int GetHashCode(IEnumerator it)
{
if (it == null)
return 0;
var hashCode = 0;
while (it.MoveNext())
{
var current = it.Current;
hashCode = (hashCode * 397) ^ (current?.GetHashCode() ?? 0);
}
return hashCode;
}
/// <summary>
/// Compares two collection, element by elements.
/// </summary>
/// <param name="left">A "from" enumerator.</param>
/// <param name="right">A "to" enumerator.</param>
/// <returns>True if lists are identical. False otherwise.</returns>
public static bool Compare(IEnumerable left, IEnumerable right)
{
if (ReferenceEquals(left, right))
return true;
if (ReferenceEquals(left, null) || ReferenceEquals(right, null))
return false;
return Compare(left.GetEnumerator(), right.GetEnumerator());
}
/// <summary>
/// Compares two collection, element by elements.
/// </summary>
/// <param name="leftIt">A "from" enumerator.</param>
/// <param name="rightIt">A "to" enumerator.</param>
/// <returns>True if lists are identical. False otherwise.</returns>
public static bool Compare(IEnumerator leftIt, IEnumerator rightIt)
{
if (ReferenceEquals(leftIt, rightIt))
return true;
if (ReferenceEquals(leftIt, null) || ReferenceEquals(rightIt, null))
return false;
bool hasLeftNext;
bool hasRightNext;
while (true)
{
hasLeftNext = leftIt.MoveNext();
hasRightNext = rightIt.MoveNext();
if (!hasLeftNext || !hasRightNext)
break;
if (!Equals(leftIt.Current, rightIt.Current))
return false;
}
// If there is any left element
if (hasLeftNext != hasRightNext)
return false;
return true;
}
/// <summary>
/// Compares two collection, element by elements.
/// </summary>
/// <param name="first">The collection to compare from.</param>
/// <param name="second">The colllection to compare to.</param>
/// <returns>True if lists are identical (but no necessarely of the same time). False otherwise.</returns>
public static bool Compare<TKey, TValue>(IDictionary<TKey, TValue> first, IDictionary<TKey, TValue> second)
{
if (ReferenceEquals(first, second)) return true;
if (ReferenceEquals(first, null) || ReferenceEquals(second, null)) return false;
if (first.Count != second.Count) return false;
var comparer = EqualityComparer<TValue>.Default;
foreach (var keyValue in first)
{
TValue secondValue;
if (!second.TryGetValue(keyValue.Key, out secondValue)) return false;
if (!comparer.Equals(keyValue.Value, secondValue)) return false;
}
// Check that all keys in second are in first
return second.Keys.All(first.ContainsKey);
}
public static bool Compare<T>(T[] left, T[] right)
{
if (ReferenceEquals(left, right))
return true;
if (ReferenceEquals(left, null) || ReferenceEquals(right, null))
return false;
if (left.Length != right.Length)
return false;
var comparer = EqualityComparer<T>.Default;
for (var i = 0; i < left.Length; ++i)
{
if (!comparer.Equals(left[i], right[i]))
return false;
}
return true;
}
/// <summary>
/// Compares two collection, element by elements.
/// </summary>
/// <param name="left">The collection to compare from.</param>
/// <param name="right">The colllection to compare to.</param>
/// <returns>True if lists are identical (but no necessarely of the same time). False otherwise.</returns>
public static bool Compare<T>(ICollection<T> left, ICollection<T> right)
{
if (ReferenceEquals(left, right))
return true;
if (ReferenceEquals(left, null) || ReferenceEquals(right, null))
return false;
if (left.Count != right.Count)
return false;
var count = 0;
var leftIt = left.GetEnumerator();
var rightIt = right.GetEnumerator();
var comparer = EqualityComparer<T>.Default;
while (leftIt.MoveNext() && rightIt.MoveNext())
{
if (!comparer.Equals(leftIt.Current, rightIt.Current))
return false;
count++;
}
// Just double check to make sure that the iterator actually returns
// the exact number of elements
if (count != left.Count)
return false;
return true;
}
/// <summary>
/// Swaps the value between two references.
/// </summary>
/// <typeparam name="T">Type of a data to swap.</typeparam>
/// <param name="left">The left value.</param>
/// <param name="right">The right value.</param>
public static void Swap<T>(ref T left, ref T right)
{
var temp = left;
left = right;
right = temp;
}
/// <summary>
/// Suspends current thread for a <see cref="sleepTime"/>.
/// </summary>
/// <param name="sleepTime">The duration of sleep.</param>
public static void Sleep(TimeSpan sleepTime)
{
var ms = (long)sleepTime.TotalMilliseconds;
if (ms < 0 || ms > int.MaxValue)
{
throw new ArgumentOutOfRangeException(nameof(sleepTime), "Sleep time must be a duration less than '2^31 - 1' milliseconds.");
}
// MH PORTED NativeInvoke.Sleep((int)ms);
Thread.Sleep( (int)ms );
}
/// <summary>
/// Suspends current thread for a <see cref="sleepTimeInMillis"/>.
/// </summary>
/// <param name="sleepTimeInMillis">The duration of sleep in milliseconds.</param>
public static void Sleep(int sleepTimeInMillis)
{
// MH PORTED NativeInvoke.Sleep(sleepTimeInMillis);
Thread.Sleep( sleepTimeInMillis );
}
/// <summary>
/// Writes the specified T data to a memory location.
/// </summary>
/// <typeparam name="T">Type of a data to write</typeparam>
/// <param name="destination">Memory location to write to.</param>
/// <param name="data">The data to write.</param>
internal static void UnsafeWrite<T>(IntPtr destination, ref T data)
{
unsafe
{
Interop.CopyInline((void*)destination, ref data);
}
}
/// <summary>
/// Reads the specified T data from a memory location.
/// </summary>
/// <typeparam name="T">Type of a data to read</typeparam>
/// <param name="source">Memory location to read from.</param>
/// <param name="data">The data write to.</param>
internal static void UnsafeReadOut<T>(IntPtr source, out T data)
{
unsafe
{
Interop.CopyInlineOut(out data, (void*)source);
}
}
/// <summary>
/// Return the sizeof a struct from a CLR. Equivalent to sizeof operator but works on generics too.
/// </summary>
/// <typeparam name="T">a struct to evaluate</typeparam>
/// <returns>sizeof this struct</returns>
internal static int UnsafeSizeOf<T>()
{
return Interop.SizeOf<T>();
}
/// <summary>
/// Linq assisted full tree iteration and collection in a single line.
/// Warning, could be slow.
/// </summary>
/// <typeparam name="T">The type to iterate.</typeparam>
/// <param name="root">The root item</param>
/// <param name="childrenF">The function to retrieve a child</param>
public static IEnumerable<T> IterateTree<T>(T root, Func<T, IEnumerable<T>> childrenF)
{
var q = new List<T> { root };
while (q.Any())
{
var c = q[0];
q.RemoveAt(0);
q.AddRange(childrenF(c) ?? Enumerable.Empty<T>());
yield return c;
}
}
/// <summary>
/// Converts a <see cref="Stopwatch" /> raw time to a <see cref="TimeSpan" />.
/// </summary>
/// <param name="delta">The delta.</param>
/// <returns>The <see cref="TimeSpan" />.</returns>
public static TimeSpan ConvertRawToTimestamp(long delta)
{
return new TimeSpan(delta == 0 ? 0 : (delta * TimeSpan.TicksPerSecond) / Stopwatch.Frequency);
}
}
}