1738 lines
83 KiB
C#
1738 lines
83 KiB
C#
// Copyright (c) Xenko contributors (https://xenko.com) and Silicon Studio Corp. (https://www.siliconstudio.co.jp)
|
|
// Distributed under the MIT license. See the LICENSE.md file in the project root for more information.
|
|
//
|
|
// -----------------------------------------------------------------------------
|
|
// Original code from SlimMath project. http://code.google.com/p/slimmath/
|
|
// Greetings to SlimDX Group. Original code published with the following license:
|
|
// -----------------------------------------------------------------------------
|
|
/*
|
|
* Copyright (c) 2007-2011 SlimDX Group
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
using System;
|
|
using System.ComponentModel;
|
|
using System.Globalization;
|
|
using System.Runtime.CompilerServices;
|
|
using System.Runtime.InteropServices;
|
|
using System.Runtime.Serialization;
|
|
|
|
namespace math
|
|
{
|
|
/// <summary>
|
|
/// Represents a three dimensional mathematical vector.
|
|
/// </summary>
|
|
[DataContract( Name = "float3")]
|
|
[DataStyle(DataStyle.Compact)]
|
|
[StructLayout(LayoutKind.Sequential, Pack = 4)]
|
|
public struct Vec3 : IEquatable<Vec3>, IFormattable
|
|
{
|
|
/// <summary>
|
|
/// The size of the <see cref="math.Vec3"/> type, in bytes.
|
|
/// </summary>
|
|
public static readonly int SizeInBytes = lib.Util.SizeOf<Vec3>();
|
|
|
|
/// <summary>
|
|
/// A <see cref="math.Vec3"/> with all of its components set to zero.
|
|
/// </summary>
|
|
public static readonly Vec3 Zero = new Vec3();
|
|
|
|
/// <summary>
|
|
/// The X unit <see cref="math.Vec3"/> (1, 0, 0).
|
|
/// </summary>
|
|
public static readonly Vec3 UnitX = new Vec3(1.0f, 0.0f, 0.0f);
|
|
|
|
/// <summary>
|
|
/// The Y unit <see cref="math.Vec3"/> (0, 1, 0).
|
|
/// </summary>
|
|
public static readonly Vec3 UnitY = new Vec3(0.0f, 1.0f, 0.0f);
|
|
|
|
/// <summary>
|
|
/// The Z unit <see cref="math.Vec3"/> (0, 0, 1).
|
|
/// </summary>
|
|
public static readonly Vec3 UnitZ = new Vec3(0.0f, 0.0f, 1.0f);
|
|
|
|
/// <summary>
|
|
/// A <see cref="math.Vec3"/> with all of its components set to one.
|
|
/// </summary>
|
|
public static readonly Vec3 One = new Vec3(1.0f, 1.0f, 1.0f);
|
|
|
|
/// <summary>
|
|
/// The X component of the vector.
|
|
/// </summary>
|
|
[DataMember( Order = 0 )]
|
|
public float X;
|
|
|
|
/// <summary>
|
|
/// The Y component of the vector.
|
|
/// </summary>
|
|
[DataMember( Order = 1 )]
|
|
public float Y;
|
|
|
|
/// <summary>
|
|
/// The Z component of the vector.
|
|
/// </summary>
|
|
[DataMember( Order = 2 )]
|
|
public float Z;
|
|
|
|
/// <summary>
|
|
/// Initializes a new instance of the <see cref="math.Vec3"/> struct.
|
|
/// </summary>
|
|
/// <param name="value">The value that will be assigned to all components.</param>
|
|
public Vec3(float value)
|
|
{
|
|
X = value;
|
|
Y = value;
|
|
Z = value;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Initializes a new instance of the <see cref="math.Vec3"/> struct.
|
|
/// </summary>
|
|
/// <param name="x">Initial value for the X component of the vector.</param>
|
|
/// <param name="y">Initial value for the Y component of the vector.</param>
|
|
/// <param name="z">Initial value for the Z component of the vector.</param>
|
|
public Vec3(float x, float y, float z)
|
|
{
|
|
X = x;
|
|
Y = y;
|
|
Z = z;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Initializes a new instance of the <see cref="math.Vec3"/> struct.
|
|
/// </summary>
|
|
/// <param name="value">A vector containing the values with which to initialize the X and Y components.</param>
|
|
/// <param name="z">Initial value for the Z component of the vector.</param>
|
|
public Vec3(Vec2 value, float z)
|
|
{
|
|
X = value.X;
|
|
Y = value.Y;
|
|
Z = z;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Initializes a new instance of the <see cref="math.Vec3"/> struct.
|
|
/// </summary>
|
|
/// <param name="values">The values to assign to the X, Y, and Z components of the vector. This must be an array with three elements.</param>
|
|
/// <exception cref="ArgumentNullException">Thrown when <paramref name="values"/> is <c>null</c>.</exception>
|
|
/// <exception cref="ArgumentOutOfRangeException">Thrown when <paramref name="values"/> contains more or less than three elements.</exception>
|
|
public Vec3(float[] values)
|
|
{
|
|
if (values == null)
|
|
throw new ArgumentNullException("values");
|
|
if (values.Length != 3)
|
|
throw new ArgumentOutOfRangeException("values", "There must be three and only three input values for Vector3.");
|
|
|
|
X = values[0];
|
|
Y = values[1];
|
|
Z = values[2];
|
|
}
|
|
|
|
/// <summary>
|
|
/// Gets a value indicting whether this instance is normalized.
|
|
/// </summary>
|
|
public bool IsNormalized
|
|
{
|
|
get { return Math.Abs((X * X) + (Y * Y) + (Z * Z) - 1f) < MathUtil.ZeroTolerance; }
|
|
}
|
|
|
|
/// <summary>
|
|
/// Gets or sets the component at the specified index.
|
|
/// </summary>
|
|
/// <value>The value of the X, Y, or Z component, depending on the index.</value>
|
|
/// <param name="index">The index of the component to access. Use 0 for the X component, 1 for the Y component, and 2 for the Z component.</param>
|
|
/// <returns>The value of the component at the specified index.</returns>
|
|
/// <exception cref="System.ArgumentOutOfRangeException">Thrown when the <paramref name="index"/> is out of the range [0, 2].</exception>
|
|
public float this[int index]
|
|
{
|
|
get
|
|
{
|
|
switch (index)
|
|
{
|
|
case 0: return X;
|
|
case 1: return Y;
|
|
case 2: return Z;
|
|
}
|
|
|
|
throw new ArgumentOutOfRangeException("index", "Indices for Vector3 run from 0 to 2, inclusive.");
|
|
}
|
|
|
|
set
|
|
{
|
|
switch (index)
|
|
{
|
|
case 0: X = value; break;
|
|
case 1: Y = value; break;
|
|
case 2: Z = value; break;
|
|
default: throw new ArgumentOutOfRangeException("index", "Indices for Vector3 run from 0 to 2, inclusive.");
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Calculates the length of the vector.
|
|
/// </summary>
|
|
/// <returns>The length of the vector.</returns>
|
|
/// <remarks>
|
|
/// <see cref="math.Vec3.LengthSquared"/> may be preferred when only the relative length is needed
|
|
/// and speed is of the essence.
|
|
/// </remarks>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public float Length()
|
|
{
|
|
return (float)Math.Sqrt((X * X) + (Y * Y) + (Z * Z));
|
|
}
|
|
|
|
/// <summary>
|
|
/// Calculates the squared length of the vector.
|
|
/// </summary>
|
|
/// <returns>The squared length of the vector.</returns>
|
|
/// <remarks>
|
|
/// This method may be preferred to <see cref="math.Vec3.Length"/> when only a relative length is needed
|
|
/// and speed is of the essence.
|
|
/// </remarks>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public float LengthSquared()
|
|
{
|
|
return (X * X) + (Y * Y) + (Z * Z);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Converts the vector into a unit vector.
|
|
/// </summary>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public void Normalize()
|
|
{
|
|
float length = Length();
|
|
if (length > MathUtil.ZeroTolerance)
|
|
{
|
|
float inv = 1.0f / length;
|
|
X *= inv;
|
|
Y *= inv;
|
|
Z *= inv;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Raises the exponent for each components.
|
|
/// </summary>
|
|
/// <param name="exponent">The exponent.</param>
|
|
public void Pow(float exponent)
|
|
{
|
|
X = (float)Math.Pow(X, exponent);
|
|
Y = (float)Math.Pow(Y, exponent);
|
|
Z = (float)Math.Pow(Z, exponent);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Creates an array containing the elements of the vector.
|
|
/// </summary>
|
|
/// <returns>A three-element array containing the components of the vector.</returns>
|
|
public float[] ToArray()
|
|
{
|
|
return new float[] { X, Y, Z };
|
|
}
|
|
|
|
/// <summary>
|
|
/// Adds two vectors.
|
|
/// </summary>
|
|
/// <param name="left">The first vector to add.</param>
|
|
/// <param name="right">The second vector to add.</param>
|
|
/// <param name="result">When the method completes, contains the sum of the two vectors.</param>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static void Add(ref Vec3 left, ref Vec3 right, out Vec3 result)
|
|
{
|
|
result = new Vec3(left.X + right.X, left.Y + right.Y, left.Z + right.Z);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Adds two vectors.
|
|
/// </summary>
|
|
/// <param name="left">The first vector to add.</param>
|
|
/// <param name="right">The second vector to add.</param>
|
|
/// <returns>The sum of the two vectors.</returns>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static Vec3 Add(Vec3 left, Vec3 right)
|
|
{
|
|
return new Vec3(left.X + right.X, left.Y + right.Y, left.Z + right.Z);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Subtracts two vectors.
|
|
/// </summary>
|
|
/// <param name="left">The first vector to subtract.</param>
|
|
/// <param name="right">The second vector to subtract.</param>
|
|
/// <param name="result">When the method completes, contains the difference of the two vectors.</param>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static void Subtract(ref Vec3 left, ref Vec3 right, out Vec3 result)
|
|
{
|
|
result = new Vec3(left.X - right.X, left.Y - right.Y, left.Z - right.Z);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Subtracts two vectors.
|
|
/// </summary>
|
|
/// <param name="left">The first vector to subtract.</param>
|
|
/// <param name="right">The second vector to subtract.</param>
|
|
/// <returns>The difference of the two vectors.</returns>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static Vec3 Subtract(Vec3 left, Vec3 right)
|
|
{
|
|
return new Vec3(left.X - right.X, left.Y - right.Y, left.Z - right.Z);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Scales a vector by the given value.
|
|
/// </summary>
|
|
/// <param name="value">The vector to scale.</param>
|
|
/// <param name="scale">The amount by which to scale the vector.</param>
|
|
/// <param name="result">When the method completes, contains the scaled vector.</param>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static void Multiply(ref Vec3 value, float scale, out Vec3 result)
|
|
{
|
|
result = new Vec3(value.X * scale, value.Y * scale, value.Z * scale);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Scales a vector by the given value.
|
|
/// </summary>
|
|
/// <param name="value">The vector to scale.</param>
|
|
/// <param name="scale">The amount by which to scale the vector.</param>
|
|
/// <returns>The scaled vector.</returns>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static Vec3 Multiply(Vec3 value, float scale)
|
|
{
|
|
return new Vec3(value.X * scale, value.Y * scale, value.Z * scale);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Modulates a vector with another by performing component-wise multiplication.
|
|
/// </summary>
|
|
/// <param name="left">The first vector to modulate.</param>
|
|
/// <param name="right">The second vector to modulate.</param>
|
|
/// <param name="result">When the method completes, contains the modulated vector.</param>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static void Modulate(ref Vec3 left, ref Vec3 right, out Vec3 result)
|
|
{
|
|
result = new Vec3(left.X * right.X, left.Y * right.Y, left.Z * right.Z);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Modulates a vector with another by performing component-wise multiplication.
|
|
/// </summary>
|
|
/// <param name="left">The first vector to modulate.</param>
|
|
/// <param name="right">The second vector to modulate.</param>
|
|
/// <returns>The modulated vector.</returns>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static Vec3 Modulate(Vec3 left, Vec3 right)
|
|
{
|
|
return new Vec3(left.X * right.X, left.Y * right.Y, left.Z * right.Z);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Scales a vector by the given value.
|
|
/// </summary>
|
|
/// <param name="value">The vector to scale.</param>
|
|
/// <param name="scale">The amount by which to scale the vector.</param>
|
|
/// <param name="result">When the method completes, contains the scaled vector.</param>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static void Divide(ref Vec3 value, float scale, out Vec3 result)
|
|
{
|
|
result = new Vec3(value.X / scale, value.Y / scale, value.Z / scale);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Scales a vector by the given value.
|
|
/// </summary>
|
|
/// <param name="value">The vector to scale.</param>
|
|
/// <param name="scale">The amount by which to scale the vector.</param>
|
|
/// <returns>The scaled vector.</returns>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static Vec3 Divide(Vec3 value, float scale)
|
|
{
|
|
return new Vec3(value.X / scale, value.Y / scale, value.Z / scale);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Demodulates a vector with another by performing component-wise division.
|
|
/// </summary>
|
|
/// <param name="left">The first vector to demodulate.</param>
|
|
/// <param name="right">The second vector to demodulate.</param>
|
|
/// <param name="result">When the method completes, contains the demodulated vector.</param>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static void Demodulate(ref Vec3 left, ref Vec3 right, out Vec3 result)
|
|
{
|
|
result = new Vec3(left.X / right.X, left.Y / right.Y, left.Z / right.Z);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Demodulates a vector with another by performing component-wise division.
|
|
/// </summary>
|
|
/// <param name="left">The first vector to demodulate.</param>
|
|
/// <param name="right">The second vector to demodulate.</param>
|
|
/// <returns>The demodulated vector.</returns>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static Vec3 Demodulate(Vec3 left, Vec3 right)
|
|
{
|
|
return new Vec3(left.X / right.X, left.Y / right.Y, left.Z / right.Z);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Reverses the direction of a given vector.
|
|
/// </summary>
|
|
/// <param name="value">The vector to negate.</param>
|
|
/// <param name="result">When the method completes, contains a vector facing in the opposite direction.</param>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static void Negate(ref Vec3 value, out Vec3 result)
|
|
{
|
|
result = new Vec3(-value.X, -value.Y, -value.Z);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Reverses the direction of a given vector.
|
|
/// </summary>
|
|
/// <param name="value">The vector to negate.</param>
|
|
/// <returns>A vector facing in the opposite direction.</returns>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static Vec3 Negate(Vec3 value)
|
|
{
|
|
return new Vec3(-value.X, -value.Y, -value.Z);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns a <see cref="math.Vec3"/> containing the 3D Cartesian coordinates of a point specified in Barycentric coordinates relative to a 3D triangle.
|
|
/// </summary>
|
|
/// <param name="value1">A <see cref="math.Vec3"/> containing the 3D Cartesian coordinates of vertex 1 of the triangle.</param>
|
|
/// <param name="value2">A <see cref="math.Vec3"/> containing the 3D Cartesian coordinates of vertex 2 of the triangle.</param>
|
|
/// <param name="value3">A <see cref="math.Vec3"/> containing the 3D Cartesian coordinates of vertex 3 of the triangle.</param>
|
|
/// <param name="amount1">Barycentric coordinate b2, which expresses the weighting factor toward vertex 2 (specified in <paramref name="value2"/>).</param>
|
|
/// <param name="amount2">Barycentric coordinate b3, which expresses the weighting factor toward vertex 3 (specified in <paramref name="value3"/>).</param>
|
|
/// <param name="result">When the method completes, contains the 3D Cartesian coordinates of the specified point.</param>
|
|
public static void Barycentric(ref Vec3 value1, ref Vec3 value2, ref Vec3 value3, float amount1, float amount2, out Vec3 result)
|
|
{
|
|
result = new Vec3(
|
|
(value1.X + (amount1 * (value2.X - value1.X))) + (amount2 * (value3.X - value1.X)),
|
|
(value1.Y + (amount1 * (value2.Y - value1.Y))) + (amount2 * (value3.Y - value1.Y)),
|
|
(value1.Z + (amount1 * (value2.Z - value1.Z))) + (amount2 * (value3.Z - value1.Z)));
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns a <see cref="math.Vec3"/> containing the 3D Cartesian coordinates of a point specified in Barycentric coordinates relative to a 3D triangle.
|
|
/// </summary>
|
|
/// <param name="value1">A <see cref="math.Vec3"/> containing the 3D Cartesian coordinates of vertex 1 of the triangle.</param>
|
|
/// <param name="value2">A <see cref="math.Vec3"/> containing the 3D Cartesian coordinates of vertex 2 of the triangle.</param>
|
|
/// <param name="value3">A <see cref="math.Vec3"/> containing the 3D Cartesian coordinates of vertex 3 of the triangle.</param>
|
|
/// <param name="amount1">Barycentric coordinate b2, which expresses the weighting factor toward vertex 2 (specified in <paramref name="value2"/>).</param>
|
|
/// <param name="amount2">Barycentric coordinate b3, which expresses the weighting factor toward vertex 3 (specified in <paramref name="value3"/>).</param>
|
|
/// <returns>A new <see cref="math.Vec3"/> containing the 3D Cartesian coordinates of the specified point.</returns>
|
|
public static Vec3 Barycentric(Vec3 value1, Vec3 value2, Vec3 value3, float amount1, float amount2)
|
|
{
|
|
Vec3 result;
|
|
Barycentric(ref value1, ref value2, ref value3, amount1, amount2, out result);
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Restricts a value to be within a specified range.
|
|
/// </summary>
|
|
/// <param name="value">The value to clamp.</param>
|
|
/// <param name="min">The minimum value.</param>
|
|
/// <param name="max">The maximum value.</param>
|
|
/// <param name="result">When the method completes, contains the clamped value.</param>
|
|
public static void Clamp(ref Vec3 value, ref Vec3 min, ref Vec3 max, out Vec3 result)
|
|
{
|
|
float x = value.X;
|
|
x = (x > max.X) ? max.X : x;
|
|
x = (x < min.X) ? min.X : x;
|
|
|
|
float y = value.Y;
|
|
y = (y > max.Y) ? max.Y : y;
|
|
y = (y < min.Y) ? min.Y : y;
|
|
|
|
float z = value.Z;
|
|
z = (z > max.Z) ? max.Z : z;
|
|
z = (z < min.Z) ? min.Z : z;
|
|
|
|
result = new Vec3(x, y, z);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Restricts a value to be within a specified range.
|
|
/// </summary>
|
|
/// <param name="value">The value to clamp.</param>
|
|
/// <param name="min">The minimum value.</param>
|
|
/// <param name="max">The maximum value.</param>
|
|
/// <returns>The clamped value.</returns>
|
|
public static Vec3 Clamp(Vec3 value, Vec3 min, Vec3 max)
|
|
{
|
|
Vec3 result;
|
|
Clamp(ref value, ref min, ref max, out result);
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Calculates the cross product of two vectors.
|
|
/// </summary>
|
|
/// <param name="left">First source vector.</param>
|
|
/// <param name="right">Second source vector.</param>
|
|
/// <param name="result">When the method completes, contains he cross product of the two vectors.</param>
|
|
public static void Cross(ref Vec3 left, ref Vec3 right, out Vec3 result)
|
|
{
|
|
result = new Vec3(
|
|
(left.Y * right.Z) - (left.Z * right.Y),
|
|
(left.Z * right.X) - (left.X * right.Z),
|
|
(left.X * right.Y) - (left.Y * right.X));
|
|
}
|
|
|
|
/// <summary>
|
|
/// Calculates the cross product of two vectors.
|
|
/// </summary>
|
|
/// <param name="left">First source vector.</param>
|
|
/// <param name="right">Second source vector.</param>
|
|
/// <returns>The cross product of the two vectors.</returns>
|
|
public static Vec3 Cross(Vec3 left, Vec3 right)
|
|
{
|
|
Vec3 result;
|
|
Cross(ref left, ref right, out result);
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Calculates the distance between two vectors.
|
|
/// </summary>
|
|
/// <param name="value1">The first vector.</param>
|
|
/// <param name="value2">The second vector.</param>
|
|
/// <param name="result">When the method completes, contains the distance between the two vectors.</param>
|
|
/// <remarks>
|
|
/// <see cref="math.Vec3.DistanceSquared(ref Vec3, ref Vec3, out float)"/> may be preferred when only the relative distance is needed
|
|
/// and speed is of the essence.
|
|
/// </remarks>
|
|
public static void Distance(ref Vec3 value1, ref Vec3 value2, out float result)
|
|
{
|
|
float x = value1.X - value2.X;
|
|
float y = value1.Y - value2.Y;
|
|
float z = value1.Z - value2.Z;
|
|
|
|
result = (float)Math.Sqrt((x * x) + (y * y) + (z * z));
|
|
}
|
|
|
|
/// <summary>
|
|
/// Calculates the distance between two vectors.
|
|
/// </summary>
|
|
/// <param name="value1">The first vector.</param>
|
|
/// <param name="value2">The second vector.</param>
|
|
/// <returns>The distance between the two vectors.</returns>
|
|
/// <remarks>
|
|
/// <see cref="math.Vec3.DistanceSquared(Vec3, Vec3)"/> may be preferred when only the relative distance is needed
|
|
/// and speed is of the essence.
|
|
/// </remarks>
|
|
public static float Distance(Vec3 value1, Vec3 value2)
|
|
{
|
|
float x = value1.X - value2.X;
|
|
float y = value1.Y - value2.Y;
|
|
float z = value1.Z - value2.Z;
|
|
|
|
return (float)Math.Sqrt((x * x) + (y * y) + (z * z));
|
|
}
|
|
|
|
/// <summary>
|
|
/// Calculates the squared distance between two vectors.
|
|
/// </summary>
|
|
/// <param name="value1">The first vector.</param>
|
|
/// <param name="value2">The second vector.</param>
|
|
/// <param name="result">When the method completes, contains the squared distance between the two vectors.</param>
|
|
/// <remarks>Distance squared is the value before taking the square root.
|
|
/// Distance squared can often be used in place of distance if relative comparisons are being made.
|
|
/// For example, consider three points A, B, and C. To determine whether B or C is further from A,
|
|
/// compare the distance between A and B to the distance between A and C. Calculating the two distances
|
|
/// involves two square roots, which are computationally expensive. However, using distance squared
|
|
/// provides the same information and avoids calculating two square roots.
|
|
/// </remarks>
|
|
public static void DistanceSquared(ref Vec3 value1, ref Vec3 value2, out float result)
|
|
{
|
|
float x = value1.X - value2.X;
|
|
float y = value1.Y - value2.Y;
|
|
float z = value1.Z - value2.Z;
|
|
|
|
result = (x * x) + (y * y) + (z * z);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Calculates the squared distance between two vectors.
|
|
/// </summary>
|
|
/// <param name="value1">The first vector.</param>
|
|
/// <param name="value2">The second vector.</param>
|
|
/// <returns>The squared distance between the two vectors.</returns>
|
|
/// <remarks>Distance squared is the value before taking the square root.
|
|
/// Distance squared can often be used in place of distance if relative comparisons are being made.
|
|
/// For example, consider three points A, B, and C. To determine whether B or C is further from A,
|
|
/// compare the distance between A and B to the distance between A and C. Calculating the two distances
|
|
/// involves two square roots, which are computationally expensive. However, using distance squared
|
|
/// provides the same information and avoids calculating two square roots.
|
|
/// </remarks>
|
|
public static float DistanceSquared(Vec3 value1, Vec3 value2)
|
|
{
|
|
float x = value1.X - value2.X;
|
|
float y = value1.Y - value2.Y;
|
|
float z = value1.Z - value2.Z;
|
|
|
|
return (x * x) + (y * y) + (z * z);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Calculates the dot product of two vectors.
|
|
/// </summary>
|
|
/// <param name="left">First source vector.</param>
|
|
/// <param name="right">Second source vector.</param>
|
|
/// <param name="result">When the method completes, contains the dot product of the two vectors.</param>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static void Dot(ref Vec3 left, ref Vec3 right, out float result)
|
|
{
|
|
result = (left.X * right.X) + (left.Y * right.Y) + (left.Z * right.Z);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Calculates the dot product of two vectors.
|
|
/// </summary>
|
|
/// <param name="left">First source vector.</param>
|
|
/// <param name="right">Second source vector.</param>
|
|
/// <returns>The dot product of the two vectors.</returns>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static float Dot(Vec3 left, Vec3 right)
|
|
{
|
|
return (left.X * right.X) + (left.Y * right.Y) + (left.Z * right.Z);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Converts the vector into a unit vector.
|
|
/// </summary>
|
|
/// <param name="value">The vector to normalize.</param>
|
|
/// <param name="result">When the method completes, contains the normalized vector.</param>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static void Normalize(ref Vec3 value, out Vec3 result)
|
|
{
|
|
result = value;
|
|
result.Normalize();
|
|
}
|
|
|
|
/// <summary>
|
|
/// Converts the vector into a unit vector.
|
|
/// </summary>
|
|
/// <param name="value">The vector to normalize.</param>
|
|
/// <returns>The normalized vector.</returns>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static Vec3 Normalize(Vec3 value)
|
|
{
|
|
value.Normalize();
|
|
return value;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs a linear interpolation between two vectors.
|
|
/// </summary>
|
|
/// <param name="start">Start vector.</param>
|
|
/// <param name="end">End vector.</param>
|
|
/// <param name="amount">Value between 0 and 1 indicating the weight of <paramref name="end"/>.</param>
|
|
/// <param name="result">When the method completes, contains the linear interpolation of the two vectors.</param>
|
|
/// <remarks>
|
|
/// This method performs the linear interpolation based on the following formula.
|
|
/// <code>start + (end - start) * amount</code>
|
|
/// Passing <paramref name="amount"/> a value of 0 will cause <paramref name="start"/> to be returned; a value of 1 will cause <paramref name="end"/> to be returned.
|
|
/// </remarks>
|
|
public static void Lerp(ref Vec3 start, ref Vec3 end, float amount, out Vec3 result)
|
|
{
|
|
result.X = start.X + ((end.X - start.X) * amount);
|
|
result.Y = start.Y + ((end.Y - start.Y) * amount);
|
|
result.Z = start.Z + ((end.Z - start.Z) * amount);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs a linear interpolation between two vectors.
|
|
/// </summary>
|
|
/// <param name="start">Start vector.</param>
|
|
/// <param name="end">End vector.</param>
|
|
/// <param name="amount">Value between 0 and 1 indicating the weight of <paramref name="end"/>.</param>
|
|
/// <returns>The linear interpolation of the two vectors.</returns>
|
|
/// <remarks>
|
|
/// This method performs the linear interpolation based on the following formula.
|
|
/// <code>start + (end - start) * amount</code>
|
|
/// Passing <paramref name="amount"/> a value of 0 will cause <paramref name="start"/> to be returned; a value of 1 will cause <paramref name="end"/> to be returned.
|
|
/// </remarks>
|
|
public static Vec3 Lerp(Vec3 start, Vec3 end, float amount)
|
|
{
|
|
Vec3 result;
|
|
Lerp(ref start, ref end, amount, out result);
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs a cubic interpolation between two vectors.
|
|
/// </summary>
|
|
/// <param name="start">Start vector.</param>
|
|
/// <param name="end">End vector.</param>
|
|
/// <param name="amount">Value between 0 and 1 indicating the weight of <paramref name="end"/>.</param>
|
|
/// <param name="result">When the method completes, contains the cubic interpolation of the two vectors.</param>
|
|
public static void SmoothStep(ref Vec3 start, ref Vec3 end, float amount, out Vec3 result)
|
|
{
|
|
amount = (amount > 1.0f) ? 1.0f : ((amount < 0.0f) ? 0.0f : amount);
|
|
amount = (amount * amount) * (3.0f - (2.0f * amount));
|
|
|
|
result.X = start.X + ((end.X - start.X) * amount);
|
|
result.Y = start.Y + ((end.Y - start.Y) * amount);
|
|
result.Z = start.Z + ((end.Z - start.Z) * amount);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs a cubic interpolation between two vectors.
|
|
/// </summary>
|
|
/// <param name="start">Start vector.</param>
|
|
/// <param name="end">End vector.</param>
|
|
/// <param name="amount">Value between 0 and 1 indicating the weight of <paramref name="end"/>.</param>
|
|
/// <returns>The cubic interpolation of the two vectors.</returns>
|
|
public static Vec3 SmoothStep(Vec3 start, Vec3 end, float amount)
|
|
{
|
|
Vec3 result;
|
|
SmoothStep(ref start, ref end, amount, out result);
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs a Hermite spline interpolation.
|
|
/// </summary>
|
|
/// <param name="value1">First source position vector.</param>
|
|
/// <param name="tangent1">First source tangent vector.</param>
|
|
/// <param name="value2">Second source position vector.</param>
|
|
/// <param name="tangent2">Second source tangent vector.</param>
|
|
/// <param name="amount">Weighting factor.</param>
|
|
/// <param name="result">When the method completes, contains the result of the Hermite spline interpolation.</param>
|
|
public static void Hermite(ref Vec3 value1, ref Vec3 tangent1, ref Vec3 value2, ref Vec3 tangent2, float amount, out Vec3 result)
|
|
{
|
|
float squared = amount * amount;
|
|
float cubed = amount * squared;
|
|
float part1 = ((2.0f * cubed) - (3.0f * squared)) + 1.0f;
|
|
float part2 = (-2.0f * cubed) + (3.0f * squared);
|
|
float part3 = (cubed - (2.0f * squared)) + amount;
|
|
float part4 = cubed - squared;
|
|
|
|
result.X = (((value1.X * part1) + (value2.X * part2)) + (tangent1.X * part3)) + (tangent2.X * part4);
|
|
result.Y = (((value1.Y * part1) + (value2.Y * part2)) + (tangent1.Y * part3)) + (tangent2.Y * part4);
|
|
result.Z = (((value1.Z * part1) + (value2.Z * part2)) + (tangent1.Z * part3)) + (tangent2.Z * part4);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs a Hermite spline interpolation.
|
|
/// </summary>
|
|
/// <param name="value1">First source position vector.</param>
|
|
/// <param name="tangent1">First source tangent vector.</param>
|
|
/// <param name="value2">Second source position vector.</param>
|
|
/// <param name="tangent2">Second source tangent vector.</param>
|
|
/// <param name="amount">Weighting factor.</param>
|
|
/// <returns>The result of the Hermite spline interpolation.</returns>
|
|
public static Vec3 Hermite(Vec3 value1, Vec3 tangent1, Vec3 value2, Vec3 tangent2, float amount)
|
|
{
|
|
Vec3 result;
|
|
Hermite(ref value1, ref tangent1, ref value2, ref tangent2, amount, out result);
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs a Catmull-Rom interpolation using the specified positions.
|
|
/// </summary>
|
|
/// <param name="value1">The first position in the interpolation.</param>
|
|
/// <param name="value2">The second position in the interpolation.</param>
|
|
/// <param name="value3">The third position in the interpolation.</param>
|
|
/// <param name="value4">The fourth position in the interpolation.</param>
|
|
/// <param name="amount">Weighting factor.</param>
|
|
/// <param name="result">When the method completes, contains the result of the Catmull-Rom interpolation.</param>
|
|
public static void CatmullRom(ref Vec3 value1, ref Vec3 value2, ref Vec3 value3, ref Vec3 value4, float amount, out Vec3 result)
|
|
{
|
|
float squared = amount * amount;
|
|
float cubed = amount * squared;
|
|
|
|
result.X = 0.5f * ((((2.0f * value2.X) + ((-value1.X + value3.X) * amount)) +
|
|
(((((2.0f * value1.X) - (5.0f * value2.X)) + (4.0f * value3.X)) - value4.X) * squared)) +
|
|
((((-value1.X + (3.0f * value2.X)) - (3.0f * value3.X)) + value4.X) * cubed));
|
|
|
|
result.Y = 0.5f * ((((2.0f * value2.Y) + ((-value1.Y + value3.Y) * amount)) +
|
|
(((((2.0f * value1.Y) - (5.0f * value2.Y)) + (4.0f * value3.Y)) - value4.Y) * squared)) +
|
|
((((-value1.Y + (3.0f * value2.Y)) - (3.0f * value3.Y)) + value4.Y) * cubed));
|
|
|
|
result.Z = 0.5f * ((((2.0f * value2.Z) + ((-value1.Z + value3.Z) * amount)) +
|
|
(((((2.0f * value1.Z) - (5.0f * value2.Z)) + (4.0f * value3.Z)) - value4.Z) * squared)) +
|
|
((((-value1.Z + (3.0f * value2.Z)) - (3.0f * value3.Z)) + value4.Z) * cubed));
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs a Catmull-Rom interpolation using the specified positions.
|
|
/// </summary>
|
|
/// <param name="value1">The first position in the interpolation.</param>
|
|
/// <param name="value2">The second position in the interpolation.</param>
|
|
/// <param name="value3">The third position in the interpolation.</param>
|
|
/// <param name="value4">The fourth position in the interpolation.</param>
|
|
/// <param name="amount">Weighting factor.</param>
|
|
/// <returns>A vector that is the result of the Catmull-Rom interpolation.</returns>
|
|
public static Vec3 CatmullRom(Vec3 value1, Vec3 value2, Vec3 value3, Vec3 value4, float amount)
|
|
{
|
|
Vec3 result;
|
|
CatmullRom(ref value1, ref value2, ref value3, ref value4, amount, out result);
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns a vector containing the smallest components of the specified vectors.
|
|
/// </summary>
|
|
/// <param name="left">The first source vector.</param>
|
|
/// <param name="right">The second source vector.</param>
|
|
/// <param name="result">When the method completes, contains an new vector composed of the largest components of the source vectors.</param>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static void Max(ref Vec3 left, ref Vec3 right, out Vec3 result)
|
|
{
|
|
result.X = (left.X > right.X) ? left.X : right.X;
|
|
result.Y = (left.Y > right.Y) ? left.Y : right.Y;
|
|
result.Z = (left.Z > right.Z) ? left.Z : right.Z;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns a vector containing the largest components of the specified vectors.
|
|
/// </summary>
|
|
/// <param name="left">The first source vector.</param>
|
|
/// <param name="right">The second source vector.</param>
|
|
/// <returns>A vector containing the largest components of the source vectors.</returns>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static Vec3 Max(Vec3 left, Vec3 right)
|
|
{
|
|
Vec3 result;
|
|
Max(ref left, ref right, out result);
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns a vector containing the smallest components of the specified vectors.
|
|
/// </summary>
|
|
/// <param name="left">The first source vector.</param>
|
|
/// <param name="right">The second source vector.</param>
|
|
/// <param name="result">When the method completes, contains an new vector composed of the smallest components of the source vectors.</param>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static void Min(ref Vec3 left, ref Vec3 right, out Vec3 result)
|
|
{
|
|
result.X = (left.X < right.X) ? left.X : right.X;
|
|
result.Y = (left.Y < right.Y) ? left.Y : right.Y;
|
|
result.Z = (left.Z < right.Z) ? left.Z : right.Z;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns a vector containing the smallest components of the specified vectors.
|
|
/// </summary>
|
|
/// <param name="left">The first source vector.</param>
|
|
/// <param name="right">The second source vector.</param>
|
|
/// <returns>A vector containing the smallest components of the source vectors.</returns>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static Vec3 Min(Vec3 left, Vec3 right)
|
|
{
|
|
Vec3 result;
|
|
Min(ref left, ref right, out result);
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Projects a 3D vector from object space into screen space.
|
|
/// </summary>
|
|
/// <param name="vector">The vector to project.</param>
|
|
/// <param name="x">The X position of the viewport.</param>
|
|
/// <param name="y">The Y position of the viewport.</param>
|
|
/// <param name="width">The width of the viewport.</param>
|
|
/// <param name="height">The height of the viewport.</param>
|
|
/// <param name="minZ">The minimum depth of the viewport.</param>
|
|
/// <param name="maxZ">The maximum depth of the viewport.</param>
|
|
/// <param name="worldViewProjection">The combined world-view-projection matrix.</param>
|
|
/// <param name="result">When the method completes, contains the vector in screen space.</param>
|
|
public static void Project(ref Vec3 vector, float x, float y, float width, float height, float minZ, float maxZ, ref Matrix worldViewProjection, out Vec3 result)
|
|
{
|
|
Vec3 v;
|
|
TransformCoordinate(ref vector, ref worldViewProjection, out v);
|
|
|
|
result = new Vec3(((1.0f + v.X) * 0.5f * width) + x, ((1.0f - v.Y) * 0.5f * height) + y, (v.Z * (maxZ - minZ)) + minZ);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Projects a 3D vector from object space into screen space.
|
|
/// </summary>
|
|
/// <param name="vector">The vector to project.</param>
|
|
/// <param name="x">The X position of the viewport.</param>
|
|
/// <param name="y">The Y position of the viewport.</param>
|
|
/// <param name="width">The width of the viewport.</param>
|
|
/// <param name="height">The height of the viewport.</param>
|
|
/// <param name="minZ">The minimum depth of the viewport.</param>
|
|
/// <param name="maxZ">The maximum depth of the viewport.</param>
|
|
/// <param name="worldViewProjection">The combined world-view-projection matrix.</param>
|
|
/// <returns>The vector in screen space.</returns>
|
|
public static Vec3 Project(Vec3 vector, float x, float y, float width, float height, float minZ, float maxZ, Matrix worldViewProjection)
|
|
{
|
|
Vec3 result;
|
|
Project(ref vector, x, y, width, height, minZ, maxZ, ref worldViewProjection, out result);
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Projects a 3D vector from screen space into object space.
|
|
/// </summary>
|
|
/// <param name="vector">The vector to project.</param>
|
|
/// <param name="x">The X position of the viewport.</param>
|
|
/// <param name="y">The Y position of the viewport.</param>
|
|
/// <param name="width">The width of the viewport.</param>
|
|
/// <param name="height">The height of the viewport.</param>
|
|
/// <param name="minZ">The minimum depth of the viewport.</param>
|
|
/// <param name="maxZ">The maximum depth of the viewport.</param>
|
|
/// <param name="worldViewProjection">The combined world-view-projection matrix.</param>
|
|
/// <param name="result">When the method completes, contains the vector in object space.</param>
|
|
public static void Unproject(ref Vec3 vector, float x, float y, float width, float height, float minZ, float maxZ, ref Matrix worldViewProjection, out Vec3 result)
|
|
{
|
|
Vec3 v = new Vec3();
|
|
Matrix matrix;
|
|
Matrix.Invert(ref worldViewProjection, out matrix);
|
|
|
|
v.X = (((vector.X - x) / width) * 2.0f) - 1.0f;
|
|
v.Y = -((((vector.Y - y) / height) * 2.0f) - 1.0f);
|
|
v.Z = (vector.Z - minZ) / (maxZ - minZ);
|
|
|
|
TransformCoordinate(ref v, ref matrix, out result);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Projects a 3D vector from screen space into object space.
|
|
/// </summary>
|
|
/// <param name="vector">The vector to project.</param>
|
|
/// <param name="x">The X position of the viewport.</param>
|
|
/// <param name="y">The Y position of the viewport.</param>
|
|
/// <param name="width">The width of the viewport.</param>
|
|
/// <param name="height">The height of the viewport.</param>
|
|
/// <param name="minZ">The minimum depth of the viewport.</param>
|
|
/// <param name="maxZ">The maximum depth of the viewport.</param>
|
|
/// <param name="worldViewProjection">The combined world-view-projection matrix.</param>
|
|
/// <returns>The vector in object space.</returns>
|
|
public static Vec3 Unproject(Vec3 vector, float x, float y, float width, float height, float minZ, float maxZ, Matrix worldViewProjection)
|
|
{
|
|
Vec3 result;
|
|
Unproject(ref vector, x, y, width, height, minZ, maxZ, ref worldViewProjection, out result);
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns the reflection of a vector off a surface that has the specified normal.
|
|
/// </summary>
|
|
/// <param name="vector">The source vector.</param>
|
|
/// <param name="normal">Normal of the surface.</param>
|
|
/// <param name="result">When the method completes, contains the reflected vector.</param>
|
|
/// <remarks>Reflect only gives the direction of a reflection off a surface, it does not determine
|
|
/// whether the original vector was close enough to the surface to hit it.</remarks>
|
|
public static void Reflect(ref Vec3 vector, ref Vec3 normal, out Vec3 result)
|
|
{
|
|
float dot = (vector.X * normal.X) + (vector.Y * normal.Y) + (vector.Z * normal.Z);
|
|
|
|
result.X = vector.X - ((2.0f * dot) * normal.X);
|
|
result.Y = vector.Y - ((2.0f * dot) * normal.Y);
|
|
result.Z = vector.Z - ((2.0f * dot) * normal.Z);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns the reflection of a vector off a surface that has the specified normal.
|
|
/// </summary>
|
|
/// <param name="vector">The source vector.</param>
|
|
/// <param name="normal">Normal of the surface.</param>
|
|
/// <returns>The reflected vector.</returns>
|
|
/// <remarks>Reflect only gives the direction of a reflection off a surface, it does not determine
|
|
/// whether the original vector was close enough to the surface to hit it.</remarks>
|
|
public static Vec3 Reflect(Vec3 vector, Vec3 normal)
|
|
{
|
|
Vec3 result;
|
|
Reflect(ref vector, ref normal, out result);
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Orthogonalizes a list of vectors.
|
|
/// </summary>
|
|
/// <param name="destination">The list of orthogonalized vectors.</param>
|
|
/// <param name="source">The list of vectors to orthogonalize.</param>
|
|
/// <remarks>
|
|
/// <para>Orthogonalization is the process of making all vectors orthogonal to each other. This
|
|
/// means that any given vector in the list will be orthogonal to any other given vector in the
|
|
/// list.</para>
|
|
/// <para>Because this method uses the modified Gram-Schmidt process, the resulting vectors
|
|
/// tend to be numerically unstable. The numeric stability decreases according to the vectors
|
|
/// position in the list so that the first vector is the most stable and the last vector is the
|
|
/// least stable.</para>
|
|
/// </remarks>
|
|
/// <exception cref="ArgumentNullException">Thrown when <paramref name="source"/> or <paramref name="destination"/> is <c>null</c>.</exception>
|
|
/// <exception cref="ArgumentOutOfRangeException">Thrown when <paramref name="destination"/> is shorter in length than <paramref name="source"/>.</exception>
|
|
public static void Orthogonalize(Vec3[] destination, params Vec3[] source)
|
|
{
|
|
//Uses the modified Gram-Schmidt process.
|
|
//q1 = m1
|
|
//q2 = m2 - ((q1 ⋅ m2) / (q1 ⋅ q1)) * q1
|
|
//q3 = m3 - ((q1 ⋅ m3) / (q1 ⋅ q1)) * q1 - ((q2 ⋅ m3) / (q2 ⋅ q2)) * q2
|
|
//q4 = m4 - ((q1 ⋅ m4) / (q1 ⋅ q1)) * q1 - ((q2 ⋅ m4) / (q2 ⋅ q2)) * q2 - ((q3 ⋅ m4) / (q3 ⋅ q3)) * q3
|
|
//q5 = ...
|
|
|
|
if (source == null)
|
|
throw new ArgumentNullException("_source");
|
|
if (destination == null)
|
|
throw new ArgumentNullException("destination");
|
|
if (destination.Length < source.Length)
|
|
throw new ArgumentOutOfRangeException("destination", "The destination array must be of same length or larger length than the _source array.");
|
|
|
|
for (int i = 0; i < source.Length; ++i)
|
|
{
|
|
Vec3 newvector = source[i];
|
|
|
|
for (int r = 0; r < i; ++r)
|
|
{
|
|
newvector -= (Vec3.Dot(destination[r], newvector) / Vec3.Dot(destination[r], destination[r])) * destination[r];
|
|
}
|
|
|
|
destination[i] = newvector;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Orthonormalizes a list of vectors.
|
|
/// </summary>
|
|
/// <param name="destination">The list of orthonormalized vectors.</param>
|
|
/// <param name="source">The list of vectors to orthonormalize.</param>
|
|
/// <remarks>
|
|
/// <para>Orthonormalization is the process of making all vectors orthogonal to each
|
|
/// other and making all vectors of unit length. This means that any given vector will
|
|
/// be orthogonal to any other given vector in the list.</para>
|
|
/// <para>Because this method uses the modified Gram-Schmidt process, the resulting vectors
|
|
/// tend to be numerically unstable. The numeric stability decreases according to the vectors
|
|
/// position in the list so that the first vector is the most stable and the last vector is the
|
|
/// least stable.</para>
|
|
/// </remarks>
|
|
/// <exception cref="ArgumentNullException">Thrown when <paramref name="source"/> or <paramref name="destination"/> is <c>null</c>.</exception>
|
|
/// <exception cref="ArgumentOutOfRangeException">Thrown when <paramref name="destination"/> is shorter in length than <paramref name="source"/>.</exception>
|
|
public static void Orthonormalize(Vec3[] destination, params Vec3[] source)
|
|
{
|
|
//Uses the modified Gram-Schmidt process.
|
|
//Because we are making unit vectors, we can optimize the math for orthogonalization
|
|
//and simplify the projection operation to remove the division.
|
|
//q1 = m1 / |m1|
|
|
//q2 = (m2 - (q1 ⋅ m2) * q1) / |m2 - (q1 ⋅ m2) * q1|
|
|
//q3 = (m3 - (q1 ⋅ m3) * q1 - (q2 ⋅ m3) * q2) / |m3 - (q1 ⋅ m3) * q1 - (q2 ⋅ m3) * q2|
|
|
//q4 = (m4 - (q1 ⋅ m4) * q1 - (q2 ⋅ m4) * q2 - (q3 ⋅ m4) * q3) / |m4 - (q1 ⋅ m4) * q1 - (q2 ⋅ m4) * q2 - (q3 ⋅ m4) * q3|
|
|
//q5 = ...
|
|
|
|
if (source == null)
|
|
throw new ArgumentNullException("_source");
|
|
if (destination == null)
|
|
throw new ArgumentNullException("destination");
|
|
if (destination.Length < source.Length)
|
|
throw new ArgumentOutOfRangeException("destination", "The destination array must be of same length or larger length than the _source array.");
|
|
|
|
for (int i = 0; i < source.Length; ++i)
|
|
{
|
|
Vec3 newvector = source[i];
|
|
|
|
for (int r = 0; r < i; ++r)
|
|
{
|
|
newvector -= Vec3.Dot(destination[r], newvector) * destination[r];
|
|
}
|
|
|
|
newvector.Normalize();
|
|
destination[i] = newvector;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Transforms a 3D vector by the given <see cref="math.Quaternion"/> rotation.
|
|
/// </summary>
|
|
/// <param name="vector">The vector to rotate.</param>
|
|
/// <param name="rotation">The <see cref="math.Quaternion"/> rotation to apply.</param>
|
|
/// <param name="result">When the method completes, contains the transformed <see cref="math.Vec4"/>.</param>
|
|
public static void Transform(ref Vec3 vector, ref Quaternion rotation, out Vec3 result)
|
|
{
|
|
float x = rotation.X + rotation.X;
|
|
float y = rotation.Y + rotation.Y;
|
|
float z = rotation.Z + rotation.Z;
|
|
float wx = rotation.W * x;
|
|
float wy = rotation.W * y;
|
|
float wz = rotation.W * z;
|
|
float xx = rotation.X * x;
|
|
float xy = rotation.X * y;
|
|
float xz = rotation.X * z;
|
|
float yy = rotation.Y * y;
|
|
float yz = rotation.Y * z;
|
|
float zz = rotation.Z * z;
|
|
|
|
result = new Vec3(
|
|
((vector.X * ((1.0f - yy) - zz)) + (vector.Y * (xy - wz))) + (vector.Z * (xz + wy)),
|
|
((vector.X * (xy + wz)) + (vector.Y * ((1.0f - xx) - zz))) + (vector.Z * (yz - wx)),
|
|
((vector.X * (xz - wy)) + (vector.Y * (yz + wx))) + (vector.Z * ((1.0f - xx) - yy)));
|
|
}
|
|
|
|
/// <summary>
|
|
/// Transforms a 3D vector by the given <see cref="math.Quaternion"/> rotation.
|
|
/// </summary>
|
|
/// <param name="vector">The vector to rotate.</param>
|
|
/// <param name="rotation">The <see cref="math.Quaternion"/> rotation to apply.</param>
|
|
/// <returns>The transformed <see cref="math.Vec4"/>.</returns>
|
|
public static Vec3 Transform(Vec3 vector, Quaternion rotation)
|
|
{
|
|
Vec3 result;
|
|
Transform(ref vector, ref rotation, out result);
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Transforms an array of vectors by the given <see cref="math.Quaternion"/> rotation.
|
|
/// </summary>
|
|
/// <param name="source">The array of vectors to transform.</param>
|
|
/// <param name="rotation">The <see cref="math.Quaternion"/> rotation to apply.</param>
|
|
/// <param name="destination">The array for which the transformed vectors are stored.
|
|
/// This array may be the same array as <paramref name="source"/>.</param>
|
|
/// <exception cref="ArgumentNullException">Thrown when <paramref name="source"/> or <paramref name="destination"/> is <c>null</c>.</exception>
|
|
/// <exception cref="ArgumentOutOfRangeException">Thrown when <paramref name="destination"/> is shorter in length than <paramref name="source"/>.</exception>
|
|
public static void Transform(Vec3[] source, ref Quaternion rotation, Vec3[] destination)
|
|
{
|
|
if (source == null)
|
|
throw new ArgumentNullException("_source");
|
|
if (destination == null)
|
|
throw new ArgumentNullException("destination");
|
|
if (destination.Length < source.Length)
|
|
throw new ArgumentOutOfRangeException("destination", "The destination array must be of same length or larger length than the _source array.");
|
|
|
|
float x = rotation.X + rotation.X;
|
|
float y = rotation.Y + rotation.Y;
|
|
float z = rotation.Z + rotation.Z;
|
|
float wx = rotation.W * x;
|
|
float wy = rotation.W * y;
|
|
float wz = rotation.W * z;
|
|
float xx = rotation.X * x;
|
|
float xy = rotation.X * y;
|
|
float xz = rotation.X * z;
|
|
float yy = rotation.Y * y;
|
|
float yz = rotation.Y * z;
|
|
float zz = rotation.Z * z;
|
|
|
|
float num1 = ((1.0f - yy) - zz);
|
|
float num2 = (xy - wz);
|
|
float num3 = (xz + wy);
|
|
float num4 = (xy + wz);
|
|
float num5 = ((1.0f - xx) - zz);
|
|
float num6 = (yz - wx);
|
|
float num7 = (xz - wy);
|
|
float num8 = (yz + wx);
|
|
float num9 = ((1.0f - xx) - yy);
|
|
|
|
for (int i = 0; i < source.Length; ++i)
|
|
{
|
|
destination[i] = new Vec3(
|
|
((source[i].X * num1) + (source[i].Y * num2)) + (source[i].Z * num3),
|
|
((source[i].X * num4) + (source[i].Y * num5)) + (source[i].Z * num6),
|
|
((source[i].X * num7) + (source[i].Y * num8)) + (source[i].Z * num9));
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Transforms a 3D vector by the given <see cref="math.Matrix"/>.
|
|
/// </summary>
|
|
/// <param name="vector">The source vector.</param>
|
|
/// <param name="transform">The transformation <see cref="math.Matrix"/>.</param>
|
|
/// <param name="result">When the method completes, contains the transformed <see cref="math.Vec4"/>.</param>
|
|
public static void Transform(ref Vec3 vector, ref Matrix transform, out Vec4 result)
|
|
{
|
|
result = new Vec4(
|
|
(vector.X * transform.M11) + (vector.Y * transform.M21) + (vector.Z * transform.M31) + transform.M41,
|
|
(vector.X * transform.M12) + (vector.Y * transform.M22) + (vector.Z * transform.M32) + transform.M42,
|
|
(vector.X * transform.M13) + (vector.Y * transform.M23) + (vector.Z * transform.M33) + transform.M43,
|
|
(vector.X * transform.M14) + (vector.Y * transform.M24) + (vector.Z * transform.M34) + transform.M44);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Transforms a 3D vector by the given <see cref="math.Matrix"/>.
|
|
/// </summary>
|
|
/// <param name="vector">The source vector.</param>
|
|
/// <param name="transform">The transformation <see cref="math.Matrix"/>.</param>
|
|
/// <param name="result">When the method completes, contains the transformed <see cref="math.Vec3"/>.</param>
|
|
public static void Transform(ref Vec3 vector, ref Matrix transform, out Vec3 result)
|
|
{
|
|
result = new Vec3(
|
|
(vector.X * transform.M11) + (vector.Y * transform.M21) + (vector.Z * transform.M31) + transform.M41,
|
|
(vector.X * transform.M12) + (vector.Y * transform.M22) + (vector.Z * transform.M32) + transform.M42,
|
|
(vector.X * transform.M13) + (vector.Y * transform.M23) + (vector.Z * transform.M33) + transform.M43);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Transforms a 3D vector by the given <see cref="math.Matrix"/>.
|
|
/// </summary>
|
|
/// <param name="vector">The source vector.</param>
|
|
/// <param name="transform">The transformation <see cref="math.Matrix"/>.</param>
|
|
/// <returns>The transformed <see cref="math.Vec4"/>.</returns>
|
|
public static Vec4 Transform(Vec3 vector, Matrix transform)
|
|
{
|
|
Vec4 result;
|
|
Transform(ref vector, ref transform, out result);
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Transforms an array of 3D vectors by the given <see cref="math.Matrix"/>.
|
|
/// </summary>
|
|
/// <param name="source">The array of vectors to transform.</param>
|
|
/// <param name="transform">The transformation <see cref="math.Matrix"/>.</param>
|
|
/// <param name="destination">The array for which the transformed vectors are stored.</param>
|
|
/// <exception cref="ArgumentNullException">Thrown when <paramref name="source"/> or <paramref name="destination"/> is <c>null</c>.</exception>
|
|
/// <exception cref="ArgumentOutOfRangeException">Thrown when <paramref name="destination"/> is shorter in length than <paramref name="source"/>.</exception>
|
|
public static void Transform(Vec3[] source, ref Matrix transform, Vec4[] destination)
|
|
{
|
|
if (source == null)
|
|
throw new ArgumentNullException("_source");
|
|
if (destination == null)
|
|
throw new ArgumentNullException("destination");
|
|
if (destination.Length < source.Length)
|
|
throw new ArgumentOutOfRangeException("destination", "The destination array must be of same length or larger length than the _source array.");
|
|
|
|
for (int i = 0; i < source.Length; ++i)
|
|
{
|
|
Transform(ref source[i], ref transform, out destination[i]);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs a coordinate transformation using the given <see cref="math.Matrix"/>.
|
|
/// </summary>
|
|
/// <param name="coordinate">The coordinate vector to transform.</param>
|
|
/// <param name="transform">The transformation <see cref="math.Matrix"/>.</param>
|
|
/// <param name="result">When the method completes, contains the transformed coordinates.</param>
|
|
/// <remarks>
|
|
/// A coordinate transform performs the transformation with the assumption that the w component
|
|
/// is one. The four dimensional vector obtained from the transformation operation has each
|
|
/// component in the vector divided by the w component. This forces the wcomponent to be one and
|
|
/// therefore makes the vector homogeneous. The homogeneous vector is often prefered when working
|
|
/// with coordinates as the w component can safely be ignored.
|
|
/// </remarks>
|
|
public static void TransformCoordinate(ref Vec3 coordinate, ref Matrix transform, out Vec3 result)
|
|
{
|
|
var invW = 1f / ((coordinate.X * transform.M14) + (coordinate.Y * transform.M24) + (coordinate.Z * transform.M34) + transform.M44);
|
|
result = new Vec3(
|
|
((coordinate.X * transform.M11) + (coordinate.Y * transform.M21) + (coordinate.Z * transform.M31) + transform.M41) * invW,
|
|
((coordinate.X * transform.M12) + (coordinate.Y * transform.M22) + (coordinate.Z * transform.M32) + transform.M42) * invW,
|
|
((coordinate.X * transform.M13) + (coordinate.Y * transform.M23) + (coordinate.Z * transform.M33) + transform.M43) * invW);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs a coordinate transformation using the given <see cref="math.Matrix"/>.
|
|
/// </summary>
|
|
/// <param name="coordinate">The coordinate vector to transform.</param>
|
|
/// <param name="transform">The transformation <see cref="math.Matrix"/>.</param>
|
|
/// <returns>The transformed coordinates.</returns>
|
|
/// <remarks>
|
|
/// A coordinate transform performs the transformation with the assumption that the w component
|
|
/// is one. The four dimensional vector obtained from the transformation operation has each
|
|
/// component in the vector divided by the w component. This forces the wcomponent to be one and
|
|
/// therefore makes the vector homogeneous. The homogeneous vector is often prefered when working
|
|
/// with coordinates as the w component can safely be ignored.
|
|
/// </remarks>
|
|
public static Vec3 TransformCoordinate(Vec3 coordinate, Matrix transform)
|
|
{
|
|
Vec3 result;
|
|
TransformCoordinate(ref coordinate, ref transform, out result);
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs a coordinate transformation on an array of vectors using the given <see cref="math.Matrix"/>.
|
|
/// </summary>
|
|
/// <param name="source">The array of coordinate vectors to trasnform.</param>
|
|
/// <param name="transform">The transformation <see cref="math.Matrix"/>.</param>
|
|
/// <param name="destination">The array for which the transformed vectors are stored.
|
|
/// This array may be the same array as <paramref name="source"/>.</param>
|
|
/// <exception cref="ArgumentNullException">Thrown when <paramref name="source"/> or <paramref name="destination"/> is <c>null</c>.</exception>
|
|
/// <exception cref="ArgumentOutOfRangeException">Thrown when <paramref name="destination"/> is shorter in length than <paramref name="source"/>.</exception>
|
|
/// <remarks>
|
|
/// A coordinate transform performs the transformation with the assumption that the w component
|
|
/// is one. The four dimensional vector obtained from the transformation operation has each
|
|
/// component in the vector divided by the w component. This forces the wcomponent to be one and
|
|
/// therefore makes the vector homogeneous. The homogeneous vector is often prefered when working
|
|
/// with coordinates as the w component can safely be ignored.
|
|
/// </remarks>
|
|
public static void TransformCoordinate(Vec3[] source, ref Matrix transform, Vec3[] destination)
|
|
{
|
|
if (source == null)
|
|
throw new ArgumentNullException("_source");
|
|
if (destination == null)
|
|
throw new ArgumentNullException("destination");
|
|
if (destination.Length < source.Length)
|
|
throw new ArgumentOutOfRangeException("destination", "The destination array must be of same length or larger length than the _source array.");
|
|
|
|
for (int i = 0; i < source.Length; ++i)
|
|
{
|
|
TransformCoordinate(ref source[i], ref transform, out destination[i]);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs a normal transformation using the given <see cref="math.Matrix"/>.
|
|
/// </summary>
|
|
/// <param name="normal">The normal vector to transform.</param>
|
|
/// <param name="transform">The transformation <see cref="math.Matrix"/>.</param>
|
|
/// <param name="result">When the method completes, contains the transformed normal.</param>
|
|
/// <remarks>
|
|
/// A normal transform performs the transformation with the assumption that the w component
|
|
/// is zero. This causes the fourth row and fourth collumn of the matrix to be unused. The
|
|
/// end result is a vector that is not translated, but all other transformation properties
|
|
/// apply. This is often prefered for normal vectors as normals purely represent direction
|
|
/// rather than location because normal vectors should not be translated.
|
|
/// </remarks>
|
|
public static void TransformNormal(ref Vec3 normal, ref Matrix transform, out Vec3 result)
|
|
{
|
|
result = new Vec3(
|
|
(normal.X * transform.M11) + (normal.Y * transform.M21) + (normal.Z * transform.M31),
|
|
(normal.X * transform.M12) + (normal.Y * transform.M22) + (normal.Z * transform.M32),
|
|
(normal.X * transform.M13) + (normal.Y * transform.M23) + (normal.Z * transform.M33));
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs a normal transformation using the given <see cref="math.Matrix"/>.
|
|
/// </summary>
|
|
/// <param name="normal">The normal vector to transform.</param>
|
|
/// <param name="transform">The transformation <see cref="math.Matrix"/>.</param>
|
|
/// <returns>The transformed normal.</returns>
|
|
/// <remarks>
|
|
/// A normal transform performs the transformation with the assumption that the w component
|
|
/// is zero. This causes the fourth row and fourth collumn of the matrix to be unused. The
|
|
/// end result is a vector that is not translated, but all other transformation properties
|
|
/// apply. This is often prefered for normal vectors as normals purely represent direction
|
|
/// rather than location because normal vectors should not be translated.
|
|
/// </remarks>
|
|
public static Vec3 TransformNormal(Vec3 normal, Matrix transform)
|
|
{
|
|
Vec3 result;
|
|
TransformNormal(ref normal, ref transform, out result);
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs a normal transformation on an array of vectors using the given <see cref="math.Matrix"/>.
|
|
/// </summary>
|
|
/// <param name="source">The array of normal vectors to transform.</param>
|
|
/// <param name="transform">The transformation <see cref="math.Matrix"/>.</param>
|
|
/// <param name="destination">The array for which the transformed vectors are stored.
|
|
/// This array may be the same array as <paramref name="source"/>.</param>
|
|
/// <exception cref="ArgumentNullException">Thrown when <paramref name="source"/> or <paramref name="destination"/> is <c>null</c>.</exception>
|
|
/// <exception cref="ArgumentOutOfRangeException">Thrown when <paramref name="destination"/> is shorter in length than <paramref name="source"/>.</exception>
|
|
/// <remarks>
|
|
/// A normal transform performs the transformation with the assumption that the w component
|
|
/// is zero. This causes the fourth row and fourth collumn of the matrix to be unused. The
|
|
/// end result is a vector that is not translated, but all other transformation properties
|
|
/// apply. This is often prefered for normal vectors as normals purely represent direction
|
|
/// rather than location because normal vectors should not be translated.
|
|
/// </remarks>
|
|
public static void TransformNormal(Vec3[] source, ref Matrix transform, Vec3[] destination)
|
|
{
|
|
if (source == null)
|
|
throw new ArgumentNullException("_source");
|
|
if (destination == null)
|
|
throw new ArgumentNullException("destination");
|
|
if (destination.Length < source.Length)
|
|
throw new ArgumentOutOfRangeException("destination", "The destination array must be of same length or larger length than the _source array.");
|
|
|
|
for (int i = 0; i < source.Length; ++i)
|
|
{
|
|
TransformNormal(ref source[i], ref transform, out destination[i]);
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Calculate the yaw/pitch/roll rotation equivalent to the provided quaterion.
|
|
/// </summary>
|
|
/// <param name="quaternion">The input rotation as quaternion</param>
|
|
/// <returns>The equivation yaw/pitch/roll rotation</returns>
|
|
public static Vec3 RotationYawPitchRoll(Quaternion quaternion)
|
|
{
|
|
Vec3 yawPitchRoll;
|
|
Quaternion.RotationYawPitchRoll(ref quaternion, out yawPitchRoll.X, out yawPitchRoll.Y, out yawPitchRoll.Z);
|
|
return yawPitchRoll;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Calculate the yaw/pitch/roll rotation equivalent to the provided quaterion.
|
|
/// </summary>
|
|
/// <param name="quaternion">The input rotation as quaternion</param>
|
|
/// <param name="yawPitchRoll">The equivation yaw/pitch/roll rotation</param>
|
|
public static void RotationYawPitchRoll(ref Quaternion quaternion, out Vec3 yawPitchRoll)
|
|
{
|
|
Quaternion.RotationYawPitchRoll(ref quaternion, out yawPitchRoll.X, out yawPitchRoll.Y, out yawPitchRoll.Z);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Adds two vectors.
|
|
/// </summary>
|
|
/// <param name="left">The first vector to add.</param>
|
|
/// <param name="right">The second vector to add.</param>
|
|
/// <returns>The sum of the two vectors.</returns>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static Vec3 operator +(Vec3 left, Vec3 right)
|
|
{
|
|
return new Vec3(left.X + right.X, left.Y + right.Y, left.Z + right.Z);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Assert a vector (return it unchanged).
|
|
/// </summary>
|
|
/// <param name="value">The vector to assert (unchange).</param>
|
|
/// <returns>The asserted (unchanged) vector.</returns>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static Vec3 operator +(Vec3 value)
|
|
{
|
|
return value;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Subtracts two vectors.
|
|
/// </summary>
|
|
/// <param name="left">The first vector to subtract.</param>
|
|
/// <param name="right">The second vector to subtract.</param>
|
|
/// <returns>The difference of the two vectors.</returns>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static Vec3 operator -(Vec3 left, Vec3 right)
|
|
{
|
|
return new Vec3(left.X - right.X, left.Y - right.Y, left.Z - right.Z);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Reverses the direction of a given vector.
|
|
/// </summary>
|
|
/// <param name="value">The vector to negate.</param>
|
|
/// <returns>A vector facing in the opposite direction.</returns>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static Vec3 operator -(Vec3 value)
|
|
{
|
|
return new Vec3(-value.X, -value.Y, -value.Z);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Scales a vector by the given value.
|
|
/// </summary>
|
|
/// <param name="value">The vector to scale.</param>
|
|
/// <param name="scale">The amount by which to scale the vector.</param>
|
|
/// <returns>The scaled vector.</returns>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static Vec3 operator *(float scale, Vec3 value)
|
|
{
|
|
return new Vec3(value.X * scale, value.Y * scale, value.Z * scale);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Scales a vector by the given value.
|
|
/// </summary>
|
|
/// <param name="value">The vector to scale.</param>
|
|
/// <param name="scale">The amount by which to scale the vector.</param>
|
|
/// <returns>The scaled vector.</returns>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static Vec3 operator *(Vec3 value, float scale)
|
|
{
|
|
return new Vec3(value.X * scale, value.Y * scale, value.Z * scale);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Modulates a vector with another by performing component-wise multiplication.
|
|
/// </summary>
|
|
/// <param name="left">The first vector to multiply.</param>
|
|
/// <param name="right">The second vector to multiply.</param>
|
|
/// <returns>The multiplication of the two vectors.</returns>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static Vec3 operator *(Vec3 left, Vec3 right)
|
|
{
|
|
return new Vec3(left.X * right.X, left.Y * right.Y, left.Z * right.Z);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Adds a vector with the given value.
|
|
/// </summary>
|
|
/// <param name="value">The vector to scale.</param>
|
|
/// <param name="scale">The amount by which to scale the vector.</param>
|
|
/// <returns>The vector offset.</returns>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static Vec3 operator +(Vec3 value, float scale)
|
|
{
|
|
return new Vec3(value.X + scale, value.Y + scale, value.Z + scale);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Substracts a vector by the given value.
|
|
/// </summary>
|
|
/// <param name="value">The vector to scale.</param>
|
|
/// <param name="scale">The amount by which to scale the vector.</param>
|
|
/// <returns>The vector offset.</returns>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static Vec3 operator -(Vec3 value, float scale)
|
|
{
|
|
return new Vec3(value.X - scale, value.Y - scale, value.Z - scale);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Divides a numerator by a vector.
|
|
/// </summary>
|
|
/// <param name="numerator">The numerator.</param>
|
|
/// <param name="value">The value.</param>
|
|
/// <returns>The scaled vector.</returns>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static Vec3 operator /(float numerator, Vec3 value)
|
|
{
|
|
return new Vec3(numerator / value.X, numerator / value.Y, numerator / value.Z);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Scales a vector by the given value.
|
|
/// </summary>
|
|
/// <param name="value">The vector to scale.</param>
|
|
/// <param name="scale">The amount by which to scale the vector.</param>
|
|
/// <returns>The scaled vector.</returns>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static Vec3 operator /(Vec3 value, float scale)
|
|
{
|
|
return new Vec3(value.X / scale, value.Y / scale, value.Z / scale);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Divides a vector by the given vector, component-wise.
|
|
/// </summary>
|
|
/// <param name="value">The vector to scale.</param>
|
|
/// <param name="by">The by.</param>
|
|
/// <returns>The scaled vector.</returns>
|
|
[MethodImpl(MethodImplOptions.AggressiveInlining)]
|
|
public static Vec3 operator /(Vec3 value, Vec3 by)
|
|
{
|
|
return new Vec3(value.X / by.X, value.Y / by.Y, value.Z / by.Z);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Tests for equality between two objects.
|
|
/// </summary>
|
|
/// <param name="left">The first value to compare.</param>
|
|
/// <param name="right">The second value to compare.</param>
|
|
/// <returns><c>true</c> if <paramref name="left"/> has the same value as <paramref name="right"/>; otherwise, <c>false</c>.</returns>
|
|
public static bool operator ==(Vec3 left, Vec3 right)
|
|
{
|
|
return left.Equals(right);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Tests for inequality between two objects.
|
|
/// </summary>
|
|
/// <param name="left">The first value to compare.</param>
|
|
/// <param name="right">The second value to compare.</param>
|
|
/// <returns><c>true</c> if <paramref name="left"/> has a different value than <paramref name="right"/>; otherwise, <c>false</c>.</returns>
|
|
public static bool operator !=(Vec3 left, Vec3 right)
|
|
{
|
|
return !left.Equals(right);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs an explicit conversion from <see cref="math.Vec3"/> to <see cref="math.Vec2"/>.
|
|
/// </summary>
|
|
/// <param name="value">The value.</param>
|
|
/// <returns>The result of the conversion.</returns>
|
|
public static explicit operator Vec2(Vec3 value)
|
|
{
|
|
return new Vec2(value.X, value.Y);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs an explicit conversion from <see cref="math.Vec3"/> to <see cref="math.Vec4"/>.
|
|
/// </summary>
|
|
/// <param name="value">The value.</param>
|
|
/// <returns>The result of the conversion.</returns>
|
|
public static explicit operator Vec4(Vec3 value)
|
|
{
|
|
return new Vec4(value, 0.0f);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Tests whether one 3D vector is near another 3D vector.
|
|
/// </summary>
|
|
/// <param name="left">The left vector.</param>
|
|
/// <param name="right">The right vector.</param>
|
|
/// <param name="epsilon">The epsilon.</param>
|
|
/// <returns><c>true</c> if left and right are near another 3D, <c>false</c> otherwise</returns>
|
|
public static bool NearEqual(Vec3 left, Vec3 right, Vec3 epsilon)
|
|
{
|
|
return NearEqual(ref left, ref right, ref epsilon);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Tests whether one 3D vector is near another 3D vector.
|
|
/// </summary>
|
|
/// <param name="left">The left vector.</param>
|
|
/// <param name="right">The right vector.</param>
|
|
/// <param name="epsilon">The epsilon.</param>
|
|
/// <returns><c>true</c> if left and right are near another 3D, <c>false</c> otherwise</returns>
|
|
public static bool NearEqual(ref Vec3 left, ref Vec3 right, ref Vec3 epsilon)
|
|
{
|
|
return MathUtil.WithinEpsilon(left.X, right.X, epsilon.X) &&
|
|
MathUtil.WithinEpsilon(left.Y, right.Y, epsilon.Y) &&
|
|
MathUtil.WithinEpsilon(left.Z, right.Z, epsilon.Z);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns a <see cref="string"/> that represents this instance.
|
|
/// </summary>
|
|
/// <returns>
|
|
/// A <see cref="string"/> that represents this instance.
|
|
/// </returns>
|
|
public override string ToString()
|
|
{
|
|
return string.Format(CultureInfo.CurrentCulture, "X:{0} Y:{1} Z:{2}", X, Y, Z);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns a <see cref="string"/> that represents this instance.
|
|
/// </summary>
|
|
/// <param name="format">The format.</param>
|
|
/// <returns>
|
|
/// A <see cref="string"/> that represents this instance.
|
|
/// </returns>
|
|
public string ToString(string format)
|
|
{
|
|
if (format == null)
|
|
return ToString();
|
|
|
|
return string.Format(CultureInfo.CurrentCulture, "X:{0} Y:{1} Z:{2}", X.ToString(format, CultureInfo.CurrentCulture),
|
|
Y.ToString(format, CultureInfo.CurrentCulture), Z.ToString(format, CultureInfo.CurrentCulture));
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns a <see cref="string"/> that represents this instance.
|
|
/// </summary>
|
|
/// <param name="formatProvider">The format provider.</param>
|
|
/// <returns>
|
|
/// A <see cref="string"/> that represents this instance.
|
|
/// </returns>
|
|
public string ToString(IFormatProvider formatProvider)
|
|
{
|
|
return string.Format(formatProvider, "X:{0} Y:{1} Z:{2}", X, Y, Z);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns a <see cref="string"/> that represents this instance.
|
|
/// </summary>
|
|
/// <param name="format">The format.</param>
|
|
/// <param name="formatProvider">The format provider.</param>
|
|
/// <returns>
|
|
/// A <see cref="string"/> that represents this instance.
|
|
/// </returns>
|
|
public string ToString(string format, IFormatProvider formatProvider)
|
|
{
|
|
if (format == null)
|
|
return ToString(formatProvider);
|
|
|
|
return string.Format(formatProvider, "X:{0} Y:{1} Z:{2}", X.ToString(format, formatProvider),
|
|
Y.ToString(format, formatProvider), Z.ToString(format, formatProvider));
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns a hash code for this instance.
|
|
/// </summary>
|
|
/// <returns>
|
|
/// A hash code for this instance, suitable for use in hashing algorithms and data structures like a hash table.
|
|
/// </returns>
|
|
public override int GetHashCode()
|
|
{
|
|
return X.GetHashCode() + Y.GetHashCode() + Z.GetHashCode();
|
|
}
|
|
|
|
/// <summary>
|
|
/// Determines whether the specified <see cref="math.Vec3"/> is equal to this instance.
|
|
/// </summary>
|
|
/// <param name="other">The <see cref="math.Vec3"/> to compare with this instance.</param>
|
|
/// <returns>
|
|
/// <c>true</c> if the specified <see cref="math.Vec3"/> is equal to this instance; otherwise, <c>false</c>.
|
|
/// </returns>
|
|
public bool Equals(Vec3 other)
|
|
{
|
|
return ((float)Math.Abs(other.X - X) < MathUtil.ZeroTolerance &&
|
|
(float)Math.Abs(other.Y - Y) < MathUtil.ZeroTolerance &&
|
|
(float)Math.Abs(other.Z - Z) < MathUtil.ZeroTolerance);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Determines whether the specified <see cref="object"/> is equal to this instance.
|
|
/// </summary>
|
|
/// <param name="value">The <see cref="object"/> to compare with this instance.</param>
|
|
/// <returns>
|
|
/// <c>true</c> if the specified <see cref="object"/> is equal to this instance; otherwise, <c>false</c>.
|
|
/// </returns>
|
|
public override bool Equals(object value)
|
|
{
|
|
if (value == null)
|
|
return false;
|
|
|
|
if (value.GetType() != GetType())
|
|
return false;
|
|
|
|
return Equals((Vec3)value);
|
|
}
|
|
|
|
#if WPFInterop
|
|
/// <summary>
|
|
/// Performs an implicit conversion from <see cref="math.Vector3"/> to <see cref="System.Windows.Media.Media3D.Vector3D"/>.
|
|
/// </summary>
|
|
/// <param name="value">The value.</param>
|
|
/// <returns>The result of the conversion.</returns>
|
|
public static implicit operator System.Windows.Media.Media3D.Vector3D(Vector3 value)
|
|
{
|
|
return new System.Windows.Media.Media3D.Vector3D(value.X, value.Y, value.Z);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs an explicit conversion from <see cref="System.Windows.Media.Media3D.Vector3D"/> to <see cref="math.Vector3"/>.
|
|
/// </summary>
|
|
/// <param name="value">The value.</param>
|
|
/// <returns>The result of the conversion.</returns>
|
|
public static explicit operator Vector3(System.Windows.Media.Media3D.Vector3D value)
|
|
{
|
|
return new Vector3((float)value.X, (float)value.Y, (float)value.Z);
|
|
}
|
|
#endif
|
|
|
|
#if XnaInterop
|
|
/// <summary>
|
|
/// Performs an implicit conversion from <see cref="math.Vector3"/> to <see cref="Microsoft.Xna.Framework.Vector3"/>.
|
|
/// </summary>
|
|
/// <param name="value">The value.</param>
|
|
/// <returns>The result of the conversion.</returns>
|
|
public static implicit operator Microsoft.Xna.Framework.Vector3(Vector3 value)
|
|
{
|
|
return new Microsoft.Xna.Framework.Vector3(value.X, value.Y, value.Z);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs an implicit conversion from <see cref="Microsoft.Xna.Framework.Vector3"/> to <see cref="math.Vector3"/>.
|
|
/// </summary>
|
|
/// <param name="value">The value.</param>
|
|
/// <returns>The result of the conversion.</returns>
|
|
public static implicit operator Vector3(Microsoft.Xna.Framework.Vector3 value)
|
|
{
|
|
return new Vector3(value.X, value.Y, value.Z);
|
|
}
|
|
#endif
|
|
}
|
|
}
|