1776 lines
86 KiB
C#
1776 lines
86 KiB
C#
// Copyright (c) Xenko contributors. (https://xenko.com)
|
|
// Distributed under the MIT license. See the LICENSE.md file in the project root for more information.
|
|
|
|
using System;
|
|
using System.ComponentModel;
|
|
using System.Globalization;
|
|
using System.Runtime.CompilerServices;
|
|
using System.Runtime.InteropServices;
|
|
using System.Runtime.Serialization;
|
|
|
|
namespace math
|
|
{
|
|
/// <summary>
|
|
/// Represents a three dimensional mathematical vector with double-precision floats.
|
|
/// </summary>
|
|
[DataContract( Name = "double3" )]
|
|
[DataStyle( DataStyle.Compact )]
|
|
[StructLayout( LayoutKind.Sequential, Pack = 4 )]
|
|
public struct Double3 : IEquatable<Double3>, IFormattable
|
|
{
|
|
/// <summary>
|
|
/// The size of the <see cref="math.Double3"/> type, in bytes.
|
|
/// </summary>
|
|
public static readonly int SizeInBytes = lib.Util.SizeOf<Double3>();
|
|
|
|
/// <summary>
|
|
/// A <see cref="math.Double3"/> with all of its components set to zero.
|
|
/// </summary>
|
|
public static readonly Double3 Zero = new Double3();
|
|
|
|
/// <summary>
|
|
/// The X unit <see cref="math.Double3"/> (1, 0, 0).
|
|
/// </summary>
|
|
public static readonly Double3 UnitX = new Double3( 1.0, 0.0, 0.0 );
|
|
|
|
/// <summary>
|
|
/// The Y unit <see cref="math.Double3"/> (0, 1, 0).
|
|
/// </summary>
|
|
public static readonly Double3 UnitY = new Double3( 0.0, 1.0, 0.0 );
|
|
|
|
/// <summary>
|
|
/// The Z unit <see cref="math.Double3"/> (0, 0, 1).
|
|
/// </summary>
|
|
public static readonly Double3 UnitZ = new Double3( 0.0, 0.0, 1.0 );
|
|
|
|
/// <summary>
|
|
/// A <see cref="math.Double3"/> with all of its components set to one.
|
|
/// </summary>
|
|
public static readonly Double3 One = new Double3( 1.0, 1.0, 1.0 );
|
|
|
|
/// <summary>
|
|
/// The X component of the vector.
|
|
/// </summary>
|
|
[DataMember( Order = 0 )]
|
|
public double X;
|
|
|
|
/// <summary>
|
|
/// The Y component of the vector.
|
|
/// </summary>
|
|
[DataMember( Order = 1 )]
|
|
public double Y;
|
|
|
|
/// <summary>
|
|
/// The Z component of the vector.
|
|
/// </summary>
|
|
[DataMember( Order = 2 )]
|
|
public double Z;
|
|
|
|
/// <summary>
|
|
/// Initializes a new instance of the <see cref="math.Double3"/> struct.
|
|
/// </summary>
|
|
/// <param name="value">The value that will be assigned to all components.</param>
|
|
public Double3( double value )
|
|
{
|
|
X = value;
|
|
Y = value;
|
|
Z = value;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Initializes a new instance of the <see cref="math.Double3"/> struct.
|
|
/// </summary>
|
|
/// <param name="x">Initial value for the X component of the vector.</param>
|
|
/// <param name="y">Initial value for the Y component of the vector.</param>
|
|
/// <param name="z">Initial value for the Z component of the vector.</param>
|
|
public Double3( double x, double y, double z )
|
|
{
|
|
X = x;
|
|
Y = y;
|
|
Z = z;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Initializes a new instance of the <see cref="math.Double3"/> struct.
|
|
/// </summary>
|
|
/// <param name="value">A vector containing the values with which to initialize the X and Y components.</param>
|
|
/// <param name="z">Initial value for the Z component of the vector.</param>
|
|
public Double3( Double2 value, double z )
|
|
{
|
|
X = value.X;
|
|
Y = value.Y;
|
|
Z = z;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Initializes a new instance of the <see cref="math.Double3"/> struct.
|
|
/// </summary>
|
|
/// <param name="values">The values to assign to the X, Y, and Z components of the vector. This must be an array with three elements.</param>
|
|
/// <exception cref="ArgumentNullException">Thrown when <paramref name="values"/> is <c>null</c>.</exception>
|
|
/// <exception cref="ArgumentOutOfRangeException">Thrown when <paramref name="values"/> contains more or less than three elements.</exception>
|
|
public Double3( double[] values )
|
|
{
|
|
if( values == null )
|
|
throw new ArgumentNullException( "values" );
|
|
if( values.Length != 3 )
|
|
throw new ArgumentOutOfRangeException( "values", "There must be three and only three input values for Double3." );
|
|
|
|
X = values[0];
|
|
Y = values[1];
|
|
Z = values[2];
|
|
}
|
|
|
|
/// <summary>
|
|
/// Initializes a new instance of the <see cref="math.Double3"/> struct.
|
|
/// </summary>
|
|
/// <param name="v">The Vector3 to construct the Double3 from.</param>
|
|
public Double3( Vec3 v )
|
|
{
|
|
X = v.X;
|
|
Y = v.Y;
|
|
Z = v.Z;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Gets a value indicting whether this instance is normalized.
|
|
/// </summary>
|
|
public bool IsNormalized
|
|
{
|
|
get { return Math.Abs( ( X * X ) + ( Y * Y ) + ( Z * Z ) - 1f ) < MathUtil.ZeroTolerance; }
|
|
}
|
|
|
|
/// <summary>
|
|
/// Gets or sets the component at the specified index.
|
|
/// </summary>
|
|
/// <value>The value of the X, Y, or Z component, depending on the index.</value>
|
|
/// <param name="index">The index of the component to access. Use 0 for the X component, 1 for the Y component, and 2 for the Z component.</param>
|
|
/// <returns>The value of the component at the specified index.</returns>
|
|
/// <exception cref="System.ArgumentOutOfRangeException">Thrown when the <paramref name="index"/> is out of the range [0, 2].</exception>
|
|
public double this[int index]
|
|
{
|
|
get
|
|
{
|
|
switch( index )
|
|
{
|
|
case 0:
|
|
return X;
|
|
case 1:
|
|
return Y;
|
|
case 2:
|
|
return Z;
|
|
}
|
|
|
|
throw new ArgumentOutOfRangeException( "index", "Indices for Double3 run from 0 to 2, inclusive." );
|
|
}
|
|
|
|
set
|
|
{
|
|
switch( index )
|
|
{
|
|
case 0:
|
|
X = value;
|
|
break;
|
|
case 1:
|
|
Y = value;
|
|
break;
|
|
case 2:
|
|
Z = value;
|
|
break;
|
|
default:
|
|
throw new ArgumentOutOfRangeException( "index", "Indices for Double3 run from 0 to 2, inclusive." );
|
|
}
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Calculates the length of the vector.
|
|
/// </summary>
|
|
/// <returns>The length of the vector.</returns>
|
|
/// <remarks>
|
|
/// <see cref="math.Double3.LengthSquared"/> may be preferred when only the relative length is needed
|
|
/// and speed is of the essence.
|
|
/// </remarks>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public double Length()
|
|
{
|
|
return (double)Math.Sqrt( ( X * X ) + ( Y * Y ) + ( Z * Z ) );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Calculates the squared length of the vector.
|
|
/// </summary>
|
|
/// <returns>The squared length of the vector.</returns>
|
|
/// <remarks>
|
|
/// This method may be preferred to <see cref="math.Double3.Length"/> when only a relative length is needed
|
|
/// and speed is of the essence.
|
|
/// </remarks>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public double LengthSquared()
|
|
{
|
|
return ( X * X ) + ( Y * Y ) + ( Z * Z );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Converts the vector into a unit vector.
|
|
/// </summary>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public void Normalize()
|
|
{
|
|
double length = Length();
|
|
if( length > MathUtil.ZeroTolerance )
|
|
{
|
|
double inv = 1.0 / length;
|
|
X *= inv;
|
|
Y *= inv;
|
|
Z *= inv;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Raises the exponent for each components.
|
|
/// </summary>
|
|
/// <param name="exponent">The exponent.</param>
|
|
public void Pow( double exponent )
|
|
{
|
|
X = (double)Math.Pow( X, exponent );
|
|
Y = (double)Math.Pow( Y, exponent );
|
|
Z = (double)Math.Pow( Z, exponent );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Creates an array containing the elements of the vector.
|
|
/// </summary>
|
|
/// <returns>A three-element array containing the components of the vector.</returns>
|
|
public double[] ToArray()
|
|
{
|
|
return new double[] { X, Y, Z };
|
|
}
|
|
|
|
/// <summary>
|
|
/// Adds two vectors.
|
|
/// </summary>
|
|
/// <param name="left">The first vector to add.</param>
|
|
/// <param name="right">The second vector to add.</param>
|
|
/// <param name="result">When the method completes, contains the sum of the two vectors.</param>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public static void Add( ref Double3 left, ref Double3 right, out Double3 result )
|
|
{
|
|
result = new Double3( left.X + right.X, left.Y + right.Y, left.Z + right.Z );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Adds two vectors.
|
|
/// </summary>
|
|
/// <param name="left">The first vector to add.</param>
|
|
/// <param name="right">The second vector to add.</param>
|
|
/// <returns>The sum of the two vectors.</returns>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public static Double3 Add( Double3 left, Double3 right )
|
|
{
|
|
return new Double3( left.X + right.X, left.Y + right.Y, left.Z + right.Z );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Subtracts two vectors.
|
|
/// </summary>
|
|
/// <param name="left">The first vector to subtract.</param>
|
|
/// <param name="right">The second vector to subtract.</param>
|
|
/// <param name="result">When the method completes, contains the difference of the two vectors.</param>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public static void Subtract( ref Double3 left, ref Double3 right, out Double3 result )
|
|
{
|
|
result = new Double3( left.X - right.X, left.Y - right.Y, left.Z - right.Z );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Subtracts two vectors.
|
|
/// </summary>
|
|
/// <param name="left">The first vector to subtract.</param>
|
|
/// <param name="right">The second vector to subtract.</param>
|
|
/// <returns>The difference of the two vectors.</returns>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public static Double3 Subtract( Double3 left, Double3 right )
|
|
{
|
|
return new Double3( left.X - right.X, left.Y - right.Y, left.Z - right.Z );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Scales a vector by the given value.
|
|
/// </summary>
|
|
/// <param name="value">The vector to scale.</param>
|
|
/// <param name="scale">The amount by which to scale the vector.</param>
|
|
/// <param name="result">When the method completes, contains the scaled vector.</param>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public static void Multiply( ref Double3 value, double scale, out Double3 result )
|
|
{
|
|
result = new Double3( value.X * scale, value.Y * scale, value.Z * scale );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Scales a vector by the given value.
|
|
/// </summary>
|
|
/// <param name="value">The vector to scale.</param>
|
|
/// <param name="scale">The amount by which to scale the vector.</param>
|
|
/// <returns>The scaled vector.</returns>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public static Double3 Multiply( Double3 value, double scale )
|
|
{
|
|
return new Double3( value.X * scale, value.Y * scale, value.Z * scale );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Modulates a vector with another by performing component-wise multiplication.
|
|
/// </summary>
|
|
/// <param name="left">The first vector to modulate.</param>
|
|
/// <param name="right">The second vector to modulate.</param>
|
|
/// <param name="result">When the method completes, contains the modulated vector.</param>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public static void Modulate( ref Double3 left, ref Double3 right, out Double3 result )
|
|
{
|
|
result = new Double3( left.X * right.X, left.Y * right.Y, left.Z * right.Z );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Modulates a vector with another by performing component-wise multiplication.
|
|
/// </summary>
|
|
/// <param name="left">The first vector to modulate.</param>
|
|
/// <param name="right">The second vector to modulate.</param>
|
|
/// <returns>The modulated vector.</returns>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public static Double3 Modulate( Double3 left, Double3 right )
|
|
{
|
|
return new Double3( left.X * right.X, left.Y * right.Y, left.Z * right.Z );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Scales a vector by the given value.
|
|
/// </summary>
|
|
/// <param name="value">The vector to scale.</param>
|
|
/// <param name="scale">The amount by which to scale the vector.</param>
|
|
/// <param name="result">When the method completes, contains the scaled vector.</param>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public static void Divide( ref Double3 value, double scale, out Double3 result )
|
|
{
|
|
result = new Double3( value.X / scale, value.Y / scale, value.Z / scale );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Scales a vector by the given value.
|
|
/// </summary>
|
|
/// <param name="value">The vector to scale.</param>
|
|
/// <param name="scale">The amount by which to scale the vector.</param>
|
|
/// <returns>The scaled vector.</returns>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public static Double3 Divide( Double3 value, double scale )
|
|
{
|
|
return new Double3( value.X / scale, value.Y / scale, value.Z / scale );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Demodulates a vector with another by performing component-wise division.
|
|
/// </summary>
|
|
/// <param name="left">The first vector to demodulate.</param>
|
|
/// <param name="right">The second vector to demodulate.</param>
|
|
/// <param name="result">When the method completes, contains the demodulated vector.</param>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public static void Demodulate( ref Double3 left, ref Double3 right, out Double3 result )
|
|
{
|
|
result = new Double3( left.X / right.X, left.Y / right.Y, left.Z / right.Z );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Demodulates a vector with another by performing component-wise division.
|
|
/// </summary>
|
|
/// <param name="left">The first vector to demodulate.</param>
|
|
/// <param name="right">The second vector to demodulate.</param>
|
|
/// <returns>The demodulated vector.</returns>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public static Double3 Demodulate( Double3 left, Double3 right )
|
|
{
|
|
return new Double3( left.X / right.X, left.Y / right.Y, left.Z / right.Z );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Reverses the direction of a given vector.
|
|
/// </summary>
|
|
/// <param name="value">The vector to negate.</param>
|
|
/// <param name="result">When the method completes, contains a vector facing in the opposite direction.</param>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public static void Negate( ref Double3 value, out Double3 result )
|
|
{
|
|
result = new Double3( -value.X, -value.Y, -value.Z );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Reverses the direction of a given vector.
|
|
/// </summary>
|
|
/// <param name="value">The vector to negate.</param>
|
|
/// <returns>A vector facing in the opposite direction.</returns>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public static Double3 Negate( Double3 value )
|
|
{
|
|
return new Double3( -value.X, -value.Y, -value.Z );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns a <see cref="math.Double3"/> containing the 3D Cartesian coordinates of a point specified in Barycentric coordinates relative to a 3D triangle.
|
|
/// </summary>
|
|
/// <param name="value1">A <see cref="math.Double3"/> containing the 3D Cartesian coordinates of vertex 1 of the triangle.</param>
|
|
/// <param name="value2">A <see cref="math.Double3"/> containing the 3D Cartesian coordinates of vertex 2 of the triangle.</param>
|
|
/// <param name="value3">A <see cref="math.Double3"/> containing the 3D Cartesian coordinates of vertex 3 of the triangle.</param>
|
|
/// <param name="amount1">Barycentric coordinate b2, which expresses the weighting factor toward vertex 2 (specified in <paramref name="value2"/>).</param>
|
|
/// <param name="amount2">Barycentric coordinate b3, which expresses the weighting factor toward vertex 3 (specified in <paramref name="value3"/>).</param>
|
|
/// <param name="result">When the method completes, contains the 3D Cartesian coordinates of the specified point.</param>
|
|
public static void Barycentric( ref Double3 value1, ref Double3 value2, ref Double3 value3, double amount1, double amount2, out Double3 result )
|
|
{
|
|
result = new Double3( ( value1.X + ( amount1 * ( value2.X - value1.X ) ) ) + ( amount2 * ( value3.X - value1.X ) ),
|
|
( value1.Y + ( amount1 * ( value2.Y - value1.Y ) ) ) + ( amount2 * ( value3.Y - value1.Y ) ),
|
|
( value1.Z + ( amount1 * ( value2.Z - value1.Z ) ) ) + ( amount2 * ( value3.Z - value1.Z ) ) );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns a <see cref="math.Double3"/> containing the 3D Cartesian coordinates of a point specified in Barycentric coordinates relative to a 3D triangle.
|
|
/// </summary>
|
|
/// <param name="value1">A <see cref="math.Double3"/> containing the 3D Cartesian coordinates of vertex 1 of the triangle.</param>
|
|
/// <param name="value2">A <see cref="math.Double3"/> containing the 3D Cartesian coordinates of vertex 2 of the triangle.</param>
|
|
/// <param name="value3">A <see cref="math.Double3"/> containing the 3D Cartesian coordinates of vertex 3 of the triangle.</param>
|
|
/// <param name="amount1">Barycentric coordinate b2, which expresses the weighting factor toward vertex 2 (specified in <paramref name="value2"/>).</param>
|
|
/// <param name="amount2">Barycentric coordinate b3, which expresses the weighting factor toward vertex 3 (specified in <paramref name="value3"/>).</param>
|
|
/// <returns>A new <see cref="math.Double3"/> containing the 3D Cartesian coordinates of the specified point.</returns>
|
|
public static Double3 Barycentric( Double3 value1, Double3 value2, Double3 value3, double amount1, double amount2 )
|
|
{
|
|
Double3 result;
|
|
Barycentric( ref value1, ref value2, ref value3, amount1, amount2, out result );
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Restricts a value to be within a specified range.
|
|
/// </summary>
|
|
/// <param name="value">The value to clamp.</param>
|
|
/// <param name="min">The minimum value.</param>
|
|
/// <param name="max">The maximum value.</param>
|
|
/// <param name="result">When the method completes, contains the clamped value.</param>
|
|
public static void Clamp( ref Double3 value, ref Double3 min, ref Double3 max, out Double3 result )
|
|
{
|
|
double x = value.X;
|
|
x = ( x > max.X ) ? max.X : x;
|
|
x = ( x < min.X ) ? min.X : x;
|
|
|
|
double y = value.Y;
|
|
y = ( y > max.Y ) ? max.Y : y;
|
|
y = ( y < min.Y ) ? min.Y : y;
|
|
|
|
double z = value.Z;
|
|
z = ( z > max.Z ) ? max.Z : z;
|
|
z = ( z < min.Z ) ? min.Z : z;
|
|
|
|
result = new Double3( x, y, z );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Restricts a value to be within a specified range.
|
|
/// </summary>
|
|
/// <param name="value">The value to clamp.</param>
|
|
/// <param name="min">The minimum value.</param>
|
|
/// <param name="max">The maximum value.</param>
|
|
/// <returns>The clamped value.</returns>
|
|
public static Double3 Clamp( Double3 value, Double3 min, Double3 max )
|
|
{
|
|
Double3 result;
|
|
Clamp( ref value, ref min, ref max, out result );
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Calculates the cross product of two vectors.
|
|
/// </summary>
|
|
/// <param name="left">First source vector.</param>
|
|
/// <param name="right">Second source vector.</param>
|
|
/// <param name="result">When the method completes, contains he cross product of the two vectors.</param>
|
|
public static void Cross( ref Double3 left, ref Double3 right, out Double3 result )
|
|
{
|
|
result = new Double3(
|
|
( left.Y * right.Z ) - ( left.Z * right.Y ),
|
|
( left.Z * right.X ) - ( left.X * right.Z ),
|
|
( left.X * right.Y ) - ( left.Y * right.X ) );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Calculates the cross product of two vectors.
|
|
/// </summary>
|
|
/// <param name="left">First source vector.</param>
|
|
/// <param name="right">Second source vector.</param>
|
|
/// <returns>The cross product of the two vectors.</returns>
|
|
public static Double3 Cross( Double3 left, Double3 right )
|
|
{
|
|
Double3 result;
|
|
Cross( ref left, ref right, out result );
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Calculates the distance between two vectors.
|
|
/// </summary>
|
|
/// <param name="value1">The first vector.</param>
|
|
/// <param name="value2">The second vector.</param>
|
|
/// <param name="result">When the method completes, contains the distance between the two vectors.</param>
|
|
/// <remarks>
|
|
/// <see cref="math.Double3.DistanceSquared(ref Double3, ref Double3, out double)"/> may be preferred when only the relative distance is needed
|
|
/// and speed is of the essence.
|
|
/// </remarks>
|
|
public static void Distance( ref Double3 value1, ref Double3 value2, out double result )
|
|
{
|
|
double x = value1.X - value2.X;
|
|
double y = value1.Y - value2.Y;
|
|
double z = value1.Z - value2.Z;
|
|
|
|
result = (double)Math.Sqrt( ( x * x ) + ( y * y ) + ( z * z ) );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Calculates the distance between two vectors.
|
|
/// </summary>
|
|
/// <param name="value1">The first vector.</param>
|
|
/// <param name="value2">The second vector.</param>
|
|
/// <returns>The distance between the two vectors.</returns>
|
|
/// <remarks>
|
|
/// <see cref="math.Double3.DistanceSquared(Double3, Double3)"/> may be preferred when only the relative distance is needed
|
|
/// and speed is of the essence.
|
|
/// </remarks>
|
|
public static double Distance( Double3 value1, Double3 value2 )
|
|
{
|
|
double x = value1.X - value2.X;
|
|
double y = value1.Y - value2.Y;
|
|
double z = value1.Z - value2.Z;
|
|
|
|
return (double)Math.Sqrt( ( x * x ) + ( y * y ) + ( z * z ) );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Calculates the squared distance between two vectors.
|
|
/// </summary>
|
|
/// <param name="value1">The first vector.</param>
|
|
/// <param name="value2">The second vector.</param>
|
|
/// <param name="result">When the method completes, contains the squared distance between the two vectors.</param>
|
|
/// <remarks>Distance squared is the value before taking the square root.
|
|
/// Distance squared can often be used in place of distance if relative comparisons are being made.
|
|
/// For example, consider three points A, B, and C. To determine whether B or C is further from A,
|
|
/// compare the distance between A and B to the distance between A and C. Calculating the two distances
|
|
/// involves two square roots, which are computationally expensive. However, using distance squared
|
|
/// provides the same information and avoids calculating two square roots.
|
|
/// </remarks>
|
|
public static void DistanceSquared( ref Double3 value1, ref Double3 value2, out double result )
|
|
{
|
|
double x = value1.X - value2.X;
|
|
double y = value1.Y - value2.Y;
|
|
double z = value1.Z - value2.Z;
|
|
|
|
result = ( x * x ) + ( y * y ) + ( z * z );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Calculates the squared distance between two vectors.
|
|
/// </summary>
|
|
/// <param name="value1">The first vector.</param>
|
|
/// <param name="value2">The second vector.</param>
|
|
/// <returns>The squared distance between the two vectors.</returns>
|
|
/// <remarks>Distance squared is the value before taking the square root.
|
|
/// Distance squared can often be used in place of distance if relative comparisons are being made.
|
|
/// For example, consider three points A, B, and C. To determine whether B or C is further from A,
|
|
/// compare the distance between A and B to the distance between A and C. Calculating the two distances
|
|
/// involves two square roots, which are computationally expensive. However, using distance squared
|
|
/// provides the same information and avoids calculating two square roots.
|
|
/// </remarks>
|
|
public static double DistanceSquared( Double3 value1, Double3 value2 )
|
|
{
|
|
double x = value1.X - value2.X;
|
|
double y = value1.Y - value2.Y;
|
|
double z = value1.Z - value2.Z;
|
|
|
|
return ( x * x ) + ( y * y ) + ( z * z );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Calculates the dot product of two vectors.
|
|
/// </summary>
|
|
/// <param name="left">First source vector.</param>
|
|
/// <param name="right">Second source vector.</param>
|
|
/// <param name="result">When the method completes, contains the dot product of the two vectors.</param>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public static void Dot( ref Double3 left, ref Double3 right, out double result )
|
|
{
|
|
result = ( left.X * right.X ) + ( left.Y * right.Y ) + ( left.Z * right.Z );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Calculates the dot product of two vectors.
|
|
/// </summary>
|
|
/// <param name="left">First source vector.</param>
|
|
/// <param name="right">Second source vector.</param>
|
|
/// <returns>The dot product of the two vectors.</returns>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public static double Dot( Double3 left, Double3 right )
|
|
{
|
|
return ( left.X * right.X ) + ( left.Y * right.Y ) + ( left.Z * right.Z );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Converts the vector into a unit vector.
|
|
/// </summary>
|
|
/// <param name="value">The vector to normalize.</param>
|
|
/// <param name="result">When the method completes, contains the normalized vector.</param>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public static void Normalize( ref Double3 value, out Double3 result )
|
|
{
|
|
result = value;
|
|
result.Normalize();
|
|
}
|
|
|
|
/// <summary>
|
|
/// Converts the vector into a unit vector.
|
|
/// </summary>
|
|
/// <param name="value">The vector to normalize.</param>
|
|
/// <returns>The normalized vector.</returns>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public static Double3 Normalize( Double3 value )
|
|
{
|
|
value.Normalize();
|
|
return value;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs a linear interpolation between two vectors.
|
|
/// </summary>
|
|
/// <param name="start">Start vector.</param>
|
|
/// <param name="end">End vector.</param>
|
|
/// <param name="amount">Value between 0 and 1 indicating the weight of <paramref name="end"/>.</param>
|
|
/// <param name="result">When the method completes, contains the linear interpolation of the two vectors.</param>
|
|
/// <remarks>
|
|
/// This method performs the linear interpolation based on the following formula.
|
|
/// <code>start + (end - start) * amount</code>
|
|
/// Passing <paramref name="amount"/> a value of 0 will cause <paramref name="start"/> to be returned; a value of 1 will cause <paramref name="end"/> to be returned.
|
|
/// </remarks>
|
|
public static void Lerp( ref Double3 start, ref Double3 end, double amount, out Double3 result )
|
|
{
|
|
result.X = start.X + ( ( end.X - start.X ) * amount );
|
|
result.Y = start.Y + ( ( end.Y - start.Y ) * amount );
|
|
result.Z = start.Z + ( ( end.Z - start.Z ) * amount );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs a linear interpolation between two vectors.
|
|
/// </summary>
|
|
/// <param name="start">Start vector.</param>
|
|
/// <param name="end">End vector.</param>
|
|
/// <param name="amount">Value between 0 and 1 indicating the weight of <paramref name="end"/>.</param>
|
|
/// <returns>The linear interpolation of the two vectors.</returns>
|
|
/// <remarks>
|
|
/// This method performs the linear interpolation based on the following formula.
|
|
/// <code>start + (end - start) * amount</code>
|
|
/// Passing <paramref name="amount"/> a value of 0 will cause <paramref name="start"/> to be returned; a value of 1 will cause <paramref name="end"/> to be returned.
|
|
/// </remarks>
|
|
public static Double3 Lerp( Double3 start, Double3 end, double amount )
|
|
{
|
|
Double3 result;
|
|
Lerp( ref start, ref end, amount, out result );
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs a cubic interpolation between two vectors.
|
|
/// </summary>
|
|
/// <param name="start">Start vector.</param>
|
|
/// <param name="end">End vector.</param>
|
|
/// <param name="amount">Value between 0 and 1 indicating the weight of <paramref name="end"/>.</param>
|
|
/// <param name="result">When the method completes, contains the cubic interpolation of the two vectors.</param>
|
|
public static void SmoothStep( ref Double3 start, ref Double3 end, double amount, out Double3 result )
|
|
{
|
|
amount = ( amount > 1.0 ) ? 1.0 : ( ( amount < 0.0 ) ? 0.0 : amount );
|
|
amount = ( amount * amount ) * ( 3.0f - ( 2.0f * amount ) );
|
|
|
|
result.X = start.X + ( ( end.X - start.X ) * amount );
|
|
result.Y = start.Y + ( ( end.Y - start.Y ) * amount );
|
|
result.Z = start.Z + ( ( end.Z - start.Z ) * amount );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs a cubic interpolation between two vectors.
|
|
/// </summary>
|
|
/// <param name="start">Start vector.</param>
|
|
/// <param name="end">End vector.</param>
|
|
/// <param name="amount">Value between 0 and 1 indicating the weight of <paramref name="end"/>.</param>
|
|
/// <returns>The cubic interpolation of the two vectors.</returns>
|
|
public static Double3 SmoothStep( Double3 start, Double3 end, double amount )
|
|
{
|
|
Double3 result;
|
|
SmoothStep( ref start, ref end, amount, out result );
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs a Hermite spline interpolation.
|
|
/// </summary>
|
|
/// <param name="value1">First source position vector.</param>
|
|
/// <param name="tangent1">First source tangent vector.</param>
|
|
/// <param name="value2">Second source position vector.</param>
|
|
/// <param name="tangent2">Second source tangent vector.</param>
|
|
/// <param name="amount">Weighting factor.</param>
|
|
/// <param name="result">When the method completes, contains the result of the Hermite spline interpolation.</param>
|
|
public static void Hermite( ref Double3 value1, ref Double3 tangent1, ref Double3 value2, ref Double3 tangent2, double amount, out Double3 result )
|
|
{
|
|
double squared = amount * amount;
|
|
double cubed = amount * squared;
|
|
double part1 = ( ( 2.0f * cubed ) - ( 3.0f * squared ) ) + 1.0;
|
|
double part2 = ( -2.0f * cubed ) + ( 3.0f * squared );
|
|
double part3 = ( cubed - ( 2.0f * squared ) ) + amount;
|
|
double part4 = cubed - squared;
|
|
|
|
result.X = ( ( ( value1.X * part1 ) + ( value2.X * part2 ) ) + ( tangent1.X * part3 ) ) + ( tangent2.X * part4 );
|
|
result.Y = ( ( ( value1.Y * part1 ) + ( value2.Y * part2 ) ) + ( tangent1.Y * part3 ) ) + ( tangent2.Y * part4 );
|
|
result.Z = ( ( ( value1.Z * part1 ) + ( value2.Z * part2 ) ) + ( tangent1.Z * part3 ) ) + ( tangent2.Z * part4 );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs a Hermite spline interpolation.
|
|
/// </summary>
|
|
/// <param name="value1">First source position vector.</param>
|
|
/// <param name="tangent1">First source tangent vector.</param>
|
|
/// <param name="value2">Second source position vector.</param>
|
|
/// <param name="tangent2">Second source tangent vector.</param>
|
|
/// <param name="amount">Weighting factor.</param>
|
|
/// <returns>The result of the Hermite spline interpolation.</returns>
|
|
public static Double3 Hermite( Double3 value1, Double3 tangent1, Double3 value2, Double3 tangent2, double amount )
|
|
{
|
|
Double3 result;
|
|
Hermite( ref value1, ref tangent1, ref value2, ref tangent2, amount, out result );
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs a Catmull-Rom interpolation using the specified positions.
|
|
/// </summary>
|
|
/// <param name="value1">The first position in the interpolation.</param>
|
|
/// <param name="value2">The second position in the interpolation.</param>
|
|
/// <param name="value3">The third position in the interpolation.</param>
|
|
/// <param name="value4">The fourth position in the interpolation.</param>
|
|
/// <param name="amount">Weighting factor.</param>
|
|
/// <param name="result">When the method completes, contains the result of the Catmull-Rom interpolation.</param>
|
|
public static void CatmullRom( ref Double3 value1, ref Double3 value2, ref Double3 value3, ref Double3 value4, double amount, out Double3 result )
|
|
{
|
|
double squared = amount * amount;
|
|
double cubed = amount * squared;
|
|
|
|
result.X = 0.5f * ( ( ( ( 2.0f * value2.X ) + ( ( -value1.X + value3.X ) * amount ) ) +
|
|
( ( ( ( ( 2.0f * value1.X ) - ( 5.0f * value2.X ) ) + ( 4.0f * value3.X ) ) - value4.X ) * squared ) ) +
|
|
( ( ( ( -value1.X + ( 3.0f * value2.X ) ) - ( 3.0f * value3.X ) ) + value4.X ) * cubed ) );
|
|
|
|
result.Y = 0.5f * ( ( ( ( 2.0f * value2.Y ) + ( ( -value1.Y + value3.Y ) * amount ) ) +
|
|
( ( ( ( ( 2.0f * value1.Y ) - ( 5.0f * value2.Y ) ) + ( 4.0f * value3.Y ) ) - value4.Y ) * squared ) ) +
|
|
( ( ( ( -value1.Y + ( 3.0f * value2.Y ) ) - ( 3.0f * value3.Y ) ) + value4.Y ) * cubed ) );
|
|
|
|
result.Z = 0.5f * ( ( ( ( 2.0f * value2.Z ) + ( ( -value1.Z + value3.Z ) * amount ) ) +
|
|
( ( ( ( ( 2.0f * value1.Z ) - ( 5.0f * value2.Z ) ) + ( 4.0f * value3.Z ) ) - value4.Z ) * squared ) ) +
|
|
( ( ( ( -value1.Z + ( 3.0f * value2.Z ) ) - ( 3.0f * value3.Z ) ) + value4.Z ) * cubed ) );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs a Catmull-Rom interpolation using the specified positions.
|
|
/// </summary>
|
|
/// <param name="value1">The first position in the interpolation.</param>
|
|
/// <param name="value2">The second position in the interpolation.</param>
|
|
/// <param name="value3">The third position in the interpolation.</param>
|
|
/// <param name="value4">The fourth position in the interpolation.</param>
|
|
/// <param name="amount">Weighting factor.</param>
|
|
/// <returns>A vector that is the result of the Catmull-Rom interpolation.</returns>
|
|
public static Double3 CatmullRom( Double3 value1, Double3 value2, Double3 value3, Double3 value4, double amount )
|
|
{
|
|
Double3 result;
|
|
CatmullRom( ref value1, ref value2, ref value3, ref value4, amount, out result );
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns a vector containing the smallest components of the specified vectors.
|
|
/// </summary>
|
|
/// <param name="left">The first source vector.</param>
|
|
/// <param name="right">The second source vector.</param>
|
|
/// <param name="result">When the method completes, contains an new vector composed of the largest components of the source vectors.</param>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public static void Max( ref Double3 left, ref Double3 right, out Double3 result )
|
|
{
|
|
result.X = ( left.X > right.X ) ? left.X : right.X;
|
|
result.Y = ( left.Y > right.Y ) ? left.Y : right.Y;
|
|
result.Z = ( left.Z > right.Z ) ? left.Z : right.Z;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns a vector containing the largest components of the specified vectors.
|
|
/// </summary>
|
|
/// <param name="left">The first source vector.</param>
|
|
/// <param name="right">The second source vector.</param>
|
|
/// <returns>A vector containing the largest components of the source vectors.</returns>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public static Double3 Max( Double3 left, Double3 right )
|
|
{
|
|
Double3 result;
|
|
Max( ref left, ref right, out result );
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns a vector containing the smallest components of the specified vectors.
|
|
/// </summary>
|
|
/// <param name="left">The first source vector.</param>
|
|
/// <param name="right">The second source vector.</param>
|
|
/// <param name="result">When the method completes, contains an new vector composed of the smallest components of the source vectors.</param>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public static void Min( ref Double3 left, ref Double3 right, out Double3 result )
|
|
{
|
|
result.X = ( left.X < right.X ) ? left.X : right.X;
|
|
result.Y = ( left.Y < right.Y ) ? left.Y : right.Y;
|
|
result.Z = ( left.Z < right.Z ) ? left.Z : right.Z;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns a vector containing the smallest components of the specified vectors.
|
|
/// </summary>
|
|
/// <param name="left">The first source vector.</param>
|
|
/// <param name="right">The second source vector.</param>
|
|
/// <returns>A vector containing the smallest components of the source vectors.</returns>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public static Double3 Min( Double3 left, Double3 right )
|
|
{
|
|
Double3 result;
|
|
Min( ref left, ref right, out result );
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Projects a 3D vector from object space into screen space.
|
|
/// </summary>
|
|
/// <param name="vector">The vector to project.</param>
|
|
/// <param name="x">The X position of the viewport.</param>
|
|
/// <param name="y">The Y position of the viewport.</param>
|
|
/// <param name="width">The width of the viewport.</param>
|
|
/// <param name="height">The height of the viewport.</param>
|
|
/// <param name="minZ">The minimum depth of the viewport.</param>
|
|
/// <param name="maxZ">The maximum depth of the viewport.</param>
|
|
/// <param name="worldViewProjection">The combined world-view-projection matrix.</param>
|
|
/// <param name="result">When the method completes, contains the vector in screen space.</param>
|
|
public static void Project( ref Double3 vector, double x, double y, double width, double height, double minZ, double maxZ, ref Matrix worldViewProjection, out Double3 result )
|
|
{
|
|
Double3 v;
|
|
TransformCoordinate( ref vector, ref worldViewProjection, out v );
|
|
|
|
result = new Double3( ( ( 1.0 + v.X ) * 0.5f * width ) + x, ( ( 1.0 - v.Y ) * 0.5f * height ) + y, ( v.Z * ( maxZ - minZ ) ) + minZ );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Projects a 3D vector from object space into screen space.
|
|
/// </summary>
|
|
/// <param name="vector">The vector to project.</param>
|
|
/// <param name="x">The X position of the viewport.</param>
|
|
/// <param name="y">The Y position of the viewport.</param>
|
|
/// <param name="width">The width of the viewport.</param>
|
|
/// <param name="height">The height of the viewport.</param>
|
|
/// <param name="minZ">The minimum depth of the viewport.</param>
|
|
/// <param name="maxZ">The maximum depth of the viewport.</param>
|
|
/// <param name="worldViewProjection">The combined world-view-projection matrix.</param>
|
|
/// <returns>The vector in screen space.</returns>
|
|
public static Double3 Project( Double3 vector, double x, double y, double width, double height, double minZ, double maxZ, Matrix worldViewProjection )
|
|
{
|
|
Double3 result;
|
|
Project( ref vector, x, y, width, height, minZ, maxZ, ref worldViewProjection, out result );
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Projects a 3D vector from screen space into object space.
|
|
/// </summary>
|
|
/// <param name="vector">The vector to project.</param>
|
|
/// <param name="x">The X position of the viewport.</param>
|
|
/// <param name="y">The Y position of the viewport.</param>
|
|
/// <param name="width">The width of the viewport.</param>
|
|
/// <param name="height">The height of the viewport.</param>
|
|
/// <param name="minZ">The minimum depth of the viewport.</param>
|
|
/// <param name="maxZ">The maximum depth of the viewport.</param>
|
|
/// <param name="worldViewProjection">The combined world-view-projection matrix.</param>
|
|
/// <param name="result">When the method completes, contains the vector in object space.</param>
|
|
public static void Unproject( ref Double3 vector, double x, double y, double width, double height, double minZ, double maxZ, ref Matrix worldViewProjection, out Double3 result )
|
|
{
|
|
Double3 v = new Double3();
|
|
Matrix matrix;
|
|
Matrix.Invert( ref worldViewProjection, out matrix );
|
|
|
|
v.X = ( ( ( vector.X - x ) / width ) * 2.0f ) - 1.0;
|
|
v.Y = -( ( ( ( vector.Y - y ) / height ) * 2.0f ) - 1.0 );
|
|
v.Z = ( vector.Z - minZ ) / ( maxZ - minZ );
|
|
|
|
TransformCoordinate( ref v, ref matrix, out result );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Projects a 3D vector from screen space into object space.
|
|
/// </summary>
|
|
/// <param name="vector">The vector to project.</param>
|
|
/// <param name="x">The X position of the viewport.</param>
|
|
/// <param name="y">The Y position of the viewport.</param>
|
|
/// <param name="width">The width of the viewport.</param>
|
|
/// <param name="height">The height of the viewport.</param>
|
|
/// <param name="minZ">The minimum depth of the viewport.</param>
|
|
/// <param name="maxZ">The maximum depth of the viewport.</param>
|
|
/// <param name="worldViewProjection">The combined world-view-projection matrix.</param>
|
|
/// <returns>The vector in object space.</returns>
|
|
public static Double3 Unproject( Double3 vector, double x, double y, double width, double height, double minZ, double maxZ, Matrix worldViewProjection )
|
|
{
|
|
Double3 result;
|
|
Unproject( ref vector, x, y, width, height, minZ, maxZ, ref worldViewProjection, out result );
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns the reflection of a vector off a surface that has the specified normal.
|
|
/// </summary>
|
|
/// <param name="vector">The source vector.</param>
|
|
/// <param name="normal">Normal of the surface.</param>
|
|
/// <param name="result">When the method completes, contains the reflected vector.</param>
|
|
/// <remarks>Reflect only gives the direction of a reflection off a surface, it does not determine
|
|
/// whether the original vector was close enough to the surface to hit it.</remarks>
|
|
public static void Reflect( ref Double3 vector, ref Double3 normal, out Double3 result )
|
|
{
|
|
double dot = ( vector.X * normal.X ) + ( vector.Y * normal.Y ) + ( vector.Z * normal.Z );
|
|
|
|
result.X = vector.X - ( ( 2.0f * dot ) * normal.X );
|
|
result.Y = vector.Y - ( ( 2.0f * dot ) * normal.Y );
|
|
result.Z = vector.Z - ( ( 2.0f * dot ) * normal.Z );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns the reflection of a vector off a surface that has the specified normal.
|
|
/// </summary>
|
|
/// <param name="vector">The source vector.</param>
|
|
/// <param name="normal">Normal of the surface.</param>
|
|
/// <returns>The reflected vector.</returns>
|
|
/// <remarks>Reflect only gives the direction of a reflection off a surface, it does not determine
|
|
/// whether the original vector was close enough to the surface to hit it.</remarks>
|
|
public static Double3 Reflect( Double3 vector, Double3 normal )
|
|
{
|
|
Double3 result;
|
|
Reflect( ref vector, ref normal, out result );
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Orthogonalizes a list of vectors.
|
|
/// </summary>
|
|
/// <param name="destination">The list of orthogonalized vectors.</param>
|
|
/// <param name="source">The list of vectors to orthogonalize.</param>
|
|
/// <remarks>
|
|
/// <para>Orthogonalization is the process of making all vectors orthogonal to each other. This
|
|
/// means that any given vector in the list will be orthogonal to any other given vector in the
|
|
/// list.</para>
|
|
/// <para>Because this method uses the modified Gram-Schmidt process, the resulting vectors
|
|
/// tend to be numerically unstable. The numeric stability decreases according to the vectors
|
|
/// position in the list so that the first vector is the most stable and the last vector is the
|
|
/// least stable.</para>
|
|
/// </remarks>
|
|
/// <exception cref="ArgumentNullException">Thrown when <paramref name="source"/> or <paramref name="destination"/> is <c>null</c>.</exception>
|
|
/// <exception cref="ArgumentOutOfRangeException">Thrown when <paramref name="destination"/> is shorter in length than <paramref name="source"/>.</exception>
|
|
public static void Orthogonalize( Double3[] destination, params Double3[] source )
|
|
{
|
|
//Uses the modified Gram-Schmidt process.
|
|
//q1 = m1
|
|
//q2 = m2 - ((q1 ⋅ m2) / (q1 ⋅ q1)) * q1
|
|
//q3 = m3 - ((q1 ⋅ m3) / (q1 ⋅ q1)) * q1 - ((q2 ⋅ m3) / (q2 ⋅ q2)) * q2
|
|
//q4 = m4 - ((q1 ⋅ m4) / (q1 ⋅ q1)) * q1 - ((q2 ⋅ m4) / (q2 ⋅ q2)) * q2 - ((q3 ⋅ m4) / (q3 ⋅ q3)) * q3
|
|
//q5 = ...
|
|
|
|
if( source == null )
|
|
throw new ArgumentNullException( "_source" );
|
|
if( destination == null )
|
|
throw new ArgumentNullException( "destination" );
|
|
if( destination.Length < source.Length )
|
|
throw new ArgumentOutOfRangeException( "destination", "The destination array must be of same length or larger length than the _source array." );
|
|
|
|
for( int i = 0; i < source.Length; ++i )
|
|
{
|
|
Double3 newvector = source[i];
|
|
|
|
for( int r = 0; r < i; ++r )
|
|
{
|
|
newvector -= ( Double3.Dot( destination[r], newvector ) / Double3.Dot( destination[r], destination[r] ) ) * destination[r];
|
|
}
|
|
|
|
destination[i] = newvector;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Orthonormalizes a list of vectors.
|
|
/// </summary>
|
|
/// <param name="destination">The list of orthonormalized vectors.</param>
|
|
/// <param name="source">The list of vectors to orthonormalize.</param>
|
|
/// <remarks>
|
|
/// <para>Orthonormalization is the process of making all vectors orthogonal to each
|
|
/// other and making all vectors of unit length. This means that any given vector will
|
|
/// be orthogonal to any other given vector in the list.</para>
|
|
/// <para>Because this method uses the modified Gram-Schmidt process, the resulting vectors
|
|
/// tend to be numerically unstable. The numeric stability decreases according to the vectors
|
|
/// position in the list so that the first vector is the most stable and the last vector is the
|
|
/// least stable.</para>
|
|
/// </remarks>
|
|
/// <exception cref="ArgumentNullException">Thrown when <paramref name="source"/> or <paramref name="destination"/> is <c>null</c>.</exception>
|
|
/// <exception cref="ArgumentOutOfRangeException">Thrown when <paramref name="destination"/> is shorter in length than <paramref name="source"/>.</exception>
|
|
public static void Orthonormalize( Double3[] destination, params Double3[] source )
|
|
{
|
|
//Uses the modified Gram-Schmidt process.
|
|
//Because we are making unit vectors, we can optimize the math for orthogonalization
|
|
//and simplify the projection operation to remove the division.
|
|
//q1 = m1 / |m1|
|
|
//q2 = (m2 - (q1 ⋅ m2) * q1) / |m2 - (q1 ⋅ m2) * q1|
|
|
//q3 = (m3 - (q1 ⋅ m3) * q1 - (q2 ⋅ m3) * q2) / |m3 - (q1 ⋅ m3) * q1 - (q2 ⋅ m3) * q2|
|
|
//q4 = (m4 - (q1 ⋅ m4) * q1 - (q2 ⋅ m4) * q2 - (q3 ⋅ m4) * q3) / |m4 - (q1 ⋅ m4) * q1 - (q2 ⋅ m4) * q2 - (q3 ⋅ m4) * q3|
|
|
//q5 = ...
|
|
|
|
if( source == null )
|
|
throw new ArgumentNullException( "_source" );
|
|
if( destination == null )
|
|
throw new ArgumentNullException( "destination" );
|
|
if( destination.Length < source.Length )
|
|
throw new ArgumentOutOfRangeException( "destination", "The destination array must be of same length or larger length than the _source array." );
|
|
|
|
for( int i = 0; i < source.Length; ++i )
|
|
{
|
|
Double3 newvector = source[i];
|
|
|
|
for( int r = 0; r < i; ++r )
|
|
{
|
|
newvector -= Double3.Dot( destination[r], newvector ) * destination[r];
|
|
}
|
|
|
|
newvector.Normalize();
|
|
destination[i] = newvector;
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Transforms a 3D vector by the given <see cref="math.Quaternion"/> rotation.
|
|
/// </summary>
|
|
/// <param name="vector">The vector to rotate.</param>
|
|
/// <param name="rotation">The <see cref="math.Quaternion"/> rotation to apply.</param>
|
|
/// <param name="result">When the method completes, contains the transformed <see cref="math.Double4"/>.</param>
|
|
public static void Transform( ref Double3 vector, ref Quaternion rotation, out Double3 result )
|
|
{
|
|
double x = rotation.X + rotation.X;
|
|
double y = rotation.Y + rotation.Y;
|
|
double z = rotation.Z + rotation.Z;
|
|
double wx = rotation.W * x;
|
|
double wy = rotation.W * y;
|
|
double wz = rotation.W * z;
|
|
double xx = rotation.X * x;
|
|
double xy = rotation.X * y;
|
|
double xz = rotation.X * z;
|
|
double yy = rotation.Y * y;
|
|
double yz = rotation.Y * z;
|
|
double zz = rotation.Z * z;
|
|
|
|
result = new Double3(
|
|
( ( vector.X * ( ( 1.0 - yy ) - zz ) ) + ( vector.Y * ( xy - wz ) ) ) + ( vector.Z * ( xz + wy ) ),
|
|
( ( vector.X * ( xy + wz ) ) + ( vector.Y * ( ( 1.0 - xx ) - zz ) ) ) + ( vector.Z * ( yz - wx ) ),
|
|
( ( vector.X * ( xz - wy ) ) + ( vector.Y * ( yz + wx ) ) ) + ( vector.Z * ( ( 1.0 - xx ) - yy ) ) );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Transforms a 3D vector by the given <see cref="math.Quaternion"/> rotation.
|
|
/// </summary>
|
|
/// <param name="vector">The vector to rotate.</param>
|
|
/// <param name="rotation">The <see cref="math.Quaternion"/> rotation to apply.</param>
|
|
/// <returns>The transformed <see cref="math.Double4"/>.</returns>
|
|
public static Double3 Transform( Double3 vector, Quaternion rotation )
|
|
{
|
|
Double3 result;
|
|
Transform( ref vector, ref rotation, out result );
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Transforms an array of vectors by the given <see cref="math.Quaternion"/> rotation.
|
|
/// </summary>
|
|
/// <param name="source">The array of vectors to transform.</param>
|
|
/// <param name="rotation">The <see cref="math.Quaternion"/> rotation to apply.</param>
|
|
/// <param name="destination">The array for which the transformed vectors are stored.
|
|
/// This array may be the same array as <paramref name="source"/>.</param>
|
|
/// <exception cref="ArgumentNullException">Thrown when <paramref name="source"/> or <paramref name="destination"/> is <c>null</c>.</exception>
|
|
/// <exception cref="ArgumentOutOfRangeException">Thrown when <paramref name="destination"/> is shorter in length than <paramref name="source"/>.</exception>
|
|
public static void Transform( Double3[] source, ref Quaternion rotation, Double3[] destination )
|
|
{
|
|
if( source == null )
|
|
throw new ArgumentNullException( "_source" );
|
|
if( destination == null )
|
|
throw new ArgumentNullException( "destination" );
|
|
if( destination.Length < source.Length )
|
|
throw new ArgumentOutOfRangeException( "destination", "The destination array must be of same length or larger length than the _source array." );
|
|
|
|
double x = rotation.X + rotation.X;
|
|
double y = rotation.Y + rotation.Y;
|
|
double z = rotation.Z + rotation.Z;
|
|
double wx = rotation.W * x;
|
|
double wy = rotation.W * y;
|
|
double wz = rotation.W * z;
|
|
double xx = rotation.X * x;
|
|
double xy = rotation.X * y;
|
|
double xz = rotation.X * z;
|
|
double yy = rotation.Y * y;
|
|
double yz = rotation.Y * z;
|
|
double zz = rotation.Z * z;
|
|
|
|
double num1 = ( ( 1.0 - yy ) - zz );
|
|
double num2 = ( xy - wz );
|
|
double num3 = ( xz + wy );
|
|
double num4 = ( xy + wz );
|
|
double num5 = ( ( 1.0 - xx ) - zz );
|
|
double num6 = ( yz - wx );
|
|
double num7 = ( xz - wy );
|
|
double num8 = ( yz + wx );
|
|
double num9 = ( ( 1.0 - xx ) - yy );
|
|
|
|
for( int i = 0; i < source.Length; ++i )
|
|
{
|
|
destination[i] = new Double3(
|
|
( ( source[i].X * num1 ) + ( source[i].Y * num2 ) ) + ( source[i].Z * num3 ),
|
|
( ( source[i].X * num4 ) + ( source[i].Y * num5 ) ) + ( source[i].Z * num6 ),
|
|
( ( source[i].X * num7 ) + ( source[i].Y * num8 ) ) + ( source[i].Z * num9 ) );
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Transforms a 3D vector by the given <see cref="math.Matrix"/>.
|
|
/// </summary>
|
|
/// <param name="vector">The source vector.</param>
|
|
/// <param name="transform">The transformation <see cref="math.Matrix"/>.</param>
|
|
/// <param name="result">When the method completes, contains the transformed <see cref="math.Double4"/>.</param>
|
|
public static void Transform( ref Double3 vector, ref Matrix transform, out Double4 result )
|
|
{
|
|
result = new Double4(
|
|
( vector.X * transform.M11 ) + ( vector.Y * transform.M21 ) + ( vector.Z * transform.M31 ) + transform.M41,
|
|
( vector.X * transform.M12 ) + ( vector.Y * transform.M22 ) + ( vector.Z * transform.M32 ) + transform.M42,
|
|
( vector.X * transform.M13 ) + ( vector.Y * transform.M23 ) + ( vector.Z * transform.M33 ) + transform.M43,
|
|
( vector.X * transform.M14 ) + ( vector.Y * transform.M24 ) + ( vector.Z * transform.M34 ) + transform.M44 );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Transforms a 3D vector by the given <see cref="math.Matrix"/>.
|
|
/// </summary>
|
|
/// <param name="vector">The source vector.</param>
|
|
/// <param name="transform">The transformation <see cref="math.Matrix"/>.</param>
|
|
/// <param name="result">When the method completes, contains the transformed <see cref="math.Double3"/>.</param>
|
|
public static void Transform( ref Double3 vector, ref Matrix transform, out Double3 result )
|
|
{
|
|
result = new Double3(
|
|
( vector.X * transform.M11 ) + ( vector.Y * transform.M21 ) + ( vector.Z * transform.M31 ) + transform.M41,
|
|
( vector.X * transform.M12 ) + ( vector.Y * transform.M22 ) + ( vector.Z * transform.M32 ) + transform.M42,
|
|
( vector.X * transform.M13 ) + ( vector.Y * transform.M23 ) + ( vector.Z * transform.M33 ) + transform.M43 );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Transforms a 3D vector by the given <see cref="math.Matrix"/>.
|
|
/// </summary>
|
|
/// <param name="vector">The source vector.</param>
|
|
/// <param name="transform">The transformation <see cref="math.Matrix"/>.</param>
|
|
/// <returns>The transformed <see cref="math.Double4"/>.</returns>
|
|
public static Double4 Transform( Double3 vector, Matrix transform )
|
|
{
|
|
Double4 result;
|
|
Transform( ref vector, ref transform, out result );
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Transforms an array of 3D vectors by the given <see cref="math.Matrix"/>.
|
|
/// </summary>
|
|
/// <param name="source">The array of vectors to transform.</param>
|
|
/// <param name="transform">The transformation <see cref="math.Matrix"/>.</param>
|
|
/// <param name="destination">The array for which the transformed vectors are stored.</param>
|
|
/// <exception cref="ArgumentNullException">Thrown when <paramref name="source"/> or <paramref name="destination"/> is <c>null</c>.</exception>
|
|
/// <exception cref="ArgumentOutOfRangeException">Thrown when <paramref name="destination"/> is shorter in length than <paramref name="source"/>.</exception>
|
|
public static void Transform( Double3[] source, ref Matrix transform, Double4[] destination )
|
|
{
|
|
if( source == null )
|
|
throw new ArgumentNullException( "_source" );
|
|
if( destination == null )
|
|
throw new ArgumentNullException( "destination" );
|
|
if( destination.Length < source.Length )
|
|
throw new ArgumentOutOfRangeException( "destination", "The destination array must be of same length or larger length than the _source array." );
|
|
|
|
for( int i = 0; i < source.Length; ++i )
|
|
{
|
|
Transform( ref source[i], ref transform, out destination[i] );
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs a coordinate transformation using the given <see cref="math.Matrix"/>.
|
|
/// </summary>
|
|
/// <param name="coordinate">The coordinate vector to transform.</param>
|
|
/// <param name="transform">The transformation <see cref="math.Matrix"/>.</param>
|
|
/// <param name="result">When the method completes, contains the transformed coordinates.</param>
|
|
/// <remarks>
|
|
/// A coordinate transform performs the transformation with the assumption that the w component
|
|
/// is one. The four dimensional vector obtained from the transformation operation has each
|
|
/// component in the vector divided by the w component. This forces the wcomponent to be one and
|
|
/// therefore makes the vector homogeneous. The homogeneous vector is often prefered when working
|
|
/// with coordinates as the w component can safely be ignored.
|
|
/// </remarks>
|
|
public static void TransformCoordinate( ref Double3 coordinate, ref Matrix transform, out Double3 result )
|
|
{
|
|
var invW = 1f / ( ( coordinate.X * transform.M14 ) + ( coordinate.Y * transform.M24 ) + ( coordinate.Z * transform.M34 ) + transform.M44 );
|
|
result = new Double3(
|
|
( ( coordinate.X * transform.M11 ) + ( coordinate.Y * transform.M21 ) + ( coordinate.Z * transform.M31 ) + transform.M41 ) * invW,
|
|
( ( coordinate.X * transform.M12 ) + ( coordinate.Y * transform.M22 ) + ( coordinate.Z * transform.M32 ) + transform.M42 ) * invW,
|
|
( ( coordinate.X * transform.M13 ) + ( coordinate.Y * transform.M23 ) + ( coordinate.Z * transform.M33 ) + transform.M43 ) * invW );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs a coordinate transformation using the given <see cref="math.Matrix"/>.
|
|
/// </summary>
|
|
/// <param name="coordinate">The coordinate vector to transform.</param>
|
|
/// <param name="transform">The transformation <see cref="math.Matrix"/>.</param>
|
|
/// <returns>The transformed coordinates.</returns>
|
|
/// <remarks>
|
|
/// A coordinate transform performs the transformation with the assumption that the w component
|
|
/// is one. The four dimensional vector obtained from the transformation operation has each
|
|
/// component in the vector divided by the w component. This forces the wcomponent to be one and
|
|
/// therefore makes the vector homogeneous. The homogeneous vector is often prefered when working
|
|
/// with coordinates as the w component can safely be ignored.
|
|
/// </remarks>
|
|
public static Double3 TransformCoordinate( Double3 coordinate, Matrix transform )
|
|
{
|
|
Double3 result;
|
|
TransformCoordinate( ref coordinate, ref transform, out result );
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs a coordinate transformation on an array of vectors using the given <see cref="math.Matrix"/>.
|
|
/// </summary>
|
|
/// <param name="source">The array of coordinate vectors to trasnform.</param>
|
|
/// <param name="transform">The transformation <see cref="math.Matrix"/>.</param>
|
|
/// <param name="destination">The array for which the transformed vectors are stored.
|
|
/// This array may be the same array as <paramref name="source"/>.</param>
|
|
/// <exception cref="ArgumentNullException">Thrown when <paramref name="source"/> or <paramref name="destination"/> is <c>null</c>.</exception>
|
|
/// <exception cref="ArgumentOutOfRangeException">Thrown when <paramref name="destination"/> is shorter in length than <paramref name="source"/>.</exception>
|
|
/// <remarks>
|
|
/// A coordinate transform performs the transformation with the assumption that the w component
|
|
/// is one. The four dimensional vector obtained from the transformation operation has each
|
|
/// component in the vector divided by the w component. This forces the wcomponent to be one and
|
|
/// therefore makes the vector homogeneous. The homogeneous vector is often prefered when working
|
|
/// with coordinates as the w component can safely be ignored.
|
|
/// </remarks>
|
|
public static void TransformCoordinate( Double3[] source, ref Matrix transform, Double3[] destination )
|
|
{
|
|
if( source == null )
|
|
throw new ArgumentNullException( "_source" );
|
|
if( destination == null )
|
|
throw new ArgumentNullException( "destination" );
|
|
if( destination.Length < source.Length )
|
|
throw new ArgumentOutOfRangeException( "destination", "The destination array must be of same length or larger length than the _source array." );
|
|
|
|
for( int i = 0; i < source.Length; ++i )
|
|
{
|
|
TransformCoordinate( ref source[i], ref transform, out destination[i] );
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs a normal transformation using the given <see cref="math.Matrix"/>.
|
|
/// </summary>
|
|
/// <param name="normal">The normal vector to transform.</param>
|
|
/// <param name="transform">The transformation <see cref="math.Matrix"/>.</param>
|
|
/// <param name="result">When the method completes, contains the transformed normal.</param>
|
|
/// <remarks>
|
|
/// A normal transform performs the transformation with the assumption that the w component
|
|
/// is zero. This causes the fourth row and fourth collumn of the matrix to be unused. The
|
|
/// end result is a vector that is not translated, but all other transformation properties
|
|
/// apply. This is often prefered for normal vectors as normals purely represent direction
|
|
/// rather than location because normal vectors should not be translated.
|
|
/// </remarks>
|
|
public static void TransformNormal( ref Double3 normal, ref Matrix transform, out Double3 result )
|
|
{
|
|
result = new Double3(
|
|
( normal.X * transform.M11 ) + ( normal.Y * transform.M21 ) + ( normal.Z * transform.M31 ),
|
|
( normal.X * transform.M12 ) + ( normal.Y * transform.M22 ) + ( normal.Z * transform.M32 ),
|
|
( normal.X * transform.M13 ) + ( normal.Y * transform.M23 ) + ( normal.Z * transform.M33 ) );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs a normal transformation using the given <see cref="math.Matrix"/>.
|
|
/// </summary>
|
|
/// <param name="normal">The normal vector to transform.</param>
|
|
/// <param name="transform">The transformation <see cref="math.Matrix"/>.</param>
|
|
/// <returns>The transformed normal.</returns>
|
|
/// <remarks>
|
|
/// A normal transform performs the transformation with the assumption that the w component
|
|
/// is zero. This causes the fourth row and fourth collumn of the matrix to be unused. The
|
|
/// end result is a vector that is not translated, but all other transformation properties
|
|
/// apply. This is often prefered for normal vectors as normals purely represent direction
|
|
/// rather than location because normal vectors should not be translated.
|
|
/// </remarks>
|
|
public static Double3 TransformNormal( Double3 normal, Matrix transform )
|
|
{
|
|
Double3 result;
|
|
TransformNormal( ref normal, ref transform, out result );
|
|
return result;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs a normal transformation on an array of vectors using the given <see cref="math.Matrix"/>.
|
|
/// </summary>
|
|
/// <param name="source">The array of normal vectors to transform.</param>
|
|
/// <param name="transform">The transformation <see cref="math.Matrix"/>.</param>
|
|
/// <param name="destination">The array for which the transformed vectors are stored.
|
|
/// This array may be the same array as <paramref name="source"/>.</param>
|
|
/// <exception cref="ArgumentNullException">Thrown when <paramref name="source"/> or <paramref name="destination"/> is <c>null</c>.</exception>
|
|
/// <exception cref="ArgumentOutOfRangeException">Thrown when <paramref name="destination"/> is shorter in length than <paramref name="source"/>.</exception>
|
|
/// <remarks>
|
|
/// A normal transform performs the transformation with the assumption that the w component
|
|
/// is zero. This causes the fourth row and fourth collumn of the matrix to be unused. The
|
|
/// end result is a vector that is not translated, but all other transformation properties
|
|
/// apply. This is often prefered for normal vectors as normals purely represent direction
|
|
/// rather than location because normal vectors should not be translated.
|
|
/// </remarks>
|
|
public static void TransformNormal( Double3[] source, ref Matrix transform, Double3[] destination )
|
|
{
|
|
if( source == null )
|
|
throw new ArgumentNullException( "_source" );
|
|
if( destination == null )
|
|
throw new ArgumentNullException( "destination" );
|
|
if( destination.Length < source.Length )
|
|
throw new ArgumentOutOfRangeException( "destination", "The destination array must be of same length or larger length than the _source array." );
|
|
|
|
for( int i = 0; i < source.Length; ++i )
|
|
{
|
|
TransformNormal( ref source[i], ref transform, out destination[i] );
|
|
}
|
|
}
|
|
|
|
/// <summary>
|
|
/// Calculate the yaw/pitch/roll rotation equivalent to the provided quaterion.
|
|
/// </summary>
|
|
/// <param name="quaternion">The input rotation as quaternion</param>
|
|
/// <returns>The equivation yaw/pitch/roll rotation</returns>
|
|
public static Double3 RotationYawPitchRoll( Quaternion quaternion )
|
|
{
|
|
Vec3 yawPitchRoll;
|
|
Quaternion.RotationYawPitchRoll( ref quaternion, out yawPitchRoll.X, out yawPitchRoll.Y, out yawPitchRoll.Z );
|
|
return yawPitchRoll;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Calculate the yaw/pitch/roll rotation equivalent to the provided quaterion.
|
|
/// </summary>
|
|
/// <param name="quaternion">The input rotation as quaternion</param>
|
|
/// <param name="yawPitchRoll">The equivation yaw/pitch/roll rotation</param>
|
|
public static void RotationYawPitchRoll( ref Quaternion quaternion, out Double3 yawPitchRoll )
|
|
{
|
|
Vec3 yawPitchRollV;
|
|
Quaternion.RotationYawPitchRoll( ref quaternion, out yawPitchRollV.X, out yawPitchRollV.Y, out yawPitchRollV.Z );
|
|
yawPitchRoll = yawPitchRollV;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Adds two vectors.
|
|
/// </summary>
|
|
/// <param name="left">The first vector to add.</param>
|
|
/// <param name="right">The second vector to add.</param>
|
|
/// <returns>The sum of the two vectors.</returns>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public static Double3 operator +( Double3 left, Double3 right )
|
|
{
|
|
return new Double3( left.X + right.X, left.Y + right.Y, left.Z + right.Z );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Assert a vector (return it unchanged).
|
|
/// </summary>
|
|
/// <param name="value">The vector to assert (unchange).</param>
|
|
/// <returns>The asserted (unchanged) vector.</returns>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public static Double3 operator +( Double3 value )
|
|
{
|
|
return value;
|
|
}
|
|
|
|
/// <summary>
|
|
/// Subtracts two vectors.
|
|
/// </summary>
|
|
/// <param name="left">The first vector to subtract.</param>
|
|
/// <param name="right">The second vector to subtract.</param>
|
|
/// <returns>The difference of the two vectors.</returns>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public static Double3 operator -( Double3 left, Double3 right )
|
|
{
|
|
return new Double3( left.X - right.X, left.Y - right.Y, left.Z - right.Z );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Reverses the direction of a given vector.
|
|
/// </summary>
|
|
/// <param name="value">The vector to negate.</param>
|
|
/// <returns>A vector facing in the opposite direction.</returns>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public static Double3 operator -( Double3 value )
|
|
{
|
|
return new Double3( -value.X, -value.Y, -value.Z );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Scales a vector by the given value.
|
|
/// </summary>
|
|
/// <param name="value">The vector to scale.</param>
|
|
/// <param name="scale">The amount by which to scale the vector.</param>
|
|
/// <returns>The scaled vector.</returns>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public static Double3 operator *( double scale, Double3 value )
|
|
{
|
|
return new Double3( value.X * scale, value.Y * scale, value.Z * scale );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Scales a vector by the given value.
|
|
/// </summary>
|
|
/// <param name="value">The vector to scale.</param>
|
|
/// <param name="scale">The amount by which to scale the vector.</param>
|
|
/// <returns>The scaled vector.</returns>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public static Double3 operator *( Double3 value, double scale )
|
|
{
|
|
return new Double3( value.X * scale, value.Y * scale, value.Z * scale );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Modulates a vector with another by performing component-wise multiplication.
|
|
/// </summary>
|
|
/// <param name="left">The first vector to multiply.</param>
|
|
/// <param name="right">The second vector to multiply.</param>
|
|
/// <returns>The multiplication of the two vectors.</returns>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public static Double3 operator *( Double3 left, Double3 right )
|
|
{
|
|
return new Double3( left.X * right.X, left.Y * right.Y, left.Z * right.Z );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Adds a vector with the given value.
|
|
/// </summary>
|
|
/// <param name="value">The vector to scale.</param>
|
|
/// <param name="scale">The amount by which to scale the vector.</param>
|
|
/// <returns>The vector offset.</returns>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public static Double3 operator +( Double3 value, double scale )
|
|
{
|
|
return new Double3( value.X + scale, value.Y + scale, value.Z + scale );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Substracts a vector by the given value.
|
|
/// </summary>
|
|
/// <param name="value">The vector to scale.</param>
|
|
/// <param name="scale">The amount by which to scale the vector.</param>
|
|
/// <returns>The vector offset.</returns>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public static Double3 operator -( Double3 value, double scale )
|
|
{
|
|
return new Double3( value.X - scale, value.Y - scale, value.Z - scale );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Divides a numerator by a vector.
|
|
/// </summary>
|
|
/// <param name="numerator">The numerator.</param>
|
|
/// <param name="value">The value.</param>
|
|
/// <returns>The scaled vector.</returns>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public static Double3 operator /( double numerator, Double3 value )
|
|
{
|
|
return new Double3( numerator / value.X, numerator / value.Y, numerator / value.Z );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Scales a vector by the given value.
|
|
/// </summary>
|
|
/// <param name="value">The vector to scale.</param>
|
|
/// <param name="scale">The amount by which to scale the vector.</param>
|
|
/// <returns>The scaled vector.</returns>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public static Double3 operator /( Double3 value, double scale )
|
|
{
|
|
return new Double3( value.X / scale, value.Y / scale, value.Z / scale );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Divides a vector by the given vector, component-wise.
|
|
/// </summary>
|
|
/// <param name="value">The vector to scale.</param>
|
|
/// <param name="by">The by.</param>
|
|
/// <returns>The scaled vector.</returns>
|
|
[MethodImpl( MethodImplOptions.AggressiveInlining )]
|
|
public static Double3 operator /( Double3 value, Double3 by )
|
|
{
|
|
return new Double3( value.X / by.X, value.Y / by.Y, value.Z / by.Z );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Tests for equality between two objects.
|
|
/// </summary>
|
|
/// <param name="left">The first value to compare.</param>
|
|
/// <param name="right">The second value to compare.</param>
|
|
/// <returns><c>true</c> if <paramref name="left"/> has the same value as <paramref name="right"/>; otherwise, <c>false</c>.</returns>
|
|
public static bool operator ==( Double3 left, Double3 right )
|
|
{
|
|
return left.Equals( right );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Tests for inequality between two objects.
|
|
/// </summary>
|
|
/// <param name="left">The first value to compare.</param>
|
|
/// <param name="right">The second value to compare.</param>
|
|
/// <returns><c>true</c> if <paramref name="left"/> has a different value than <paramref name="right"/>; otherwise, <c>false</c>.</returns>
|
|
public static bool operator !=( Double3 left, Double3 right )
|
|
{
|
|
return !left.Equals( right );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs an explicit conversion from <see cref="math.Double3"/> to <see cref="math.Vec3"/>.
|
|
/// </summary>
|
|
/// <param name="value">The value.</param>
|
|
/// <returns>The result of the conversion.</returns>
|
|
public static explicit operator Vec3( Double3 value )
|
|
{
|
|
return new Vec3( (float)value.X, (float)value.Y, (float)value.Z );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs an implicit conversion from <see cref="math.Vec3"/> to <see cref="math.Double3"/>.
|
|
/// </summary>
|
|
/// <param name="value">The value.</param>
|
|
/// <returns>The result of the conversion.</returns>
|
|
public static implicit operator Double3( Vec3 value )
|
|
{
|
|
return new Double3( value );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs an explicit conversion from <see cref="Double3"/> to <see cref="Half3"/>.
|
|
/// </summary>
|
|
/// <param name="value">The value.</param>
|
|
/// <returns>The result of the conversion.</returns>
|
|
public static explicit operator Half3( Double3 value )
|
|
{
|
|
return new Half3( (Half)value.X, (Half)value.Y, (Half)value.Z );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs an explicit conversion from <see cref="Half3"/> to <see cref="Double3"/>.
|
|
/// </summary>
|
|
/// <param name="value">The value.</param>
|
|
/// <returns>The result of the conversion.</returns>
|
|
public static explicit operator Double3( Half3 value )
|
|
{
|
|
return new Double3( value.X, value.Y, value.Z );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs an explicit conversion from <see cref="math.Double3"/> to <see cref="math.Double2"/>.
|
|
/// </summary>
|
|
/// <param name="value">The value.</param>
|
|
/// <returns>The result of the conversion.</returns>
|
|
public static explicit operator Double2( Double3 value )
|
|
{
|
|
return new Double2( value.X, value.Y );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs an explicit conversion from <see cref="math.Double3"/> to <see cref="math.Double4"/>.
|
|
/// </summary>
|
|
/// <param name="value">The value.</param>
|
|
/// <returns>The result of the conversion.</returns>
|
|
public static explicit operator Double4( Double3 value )
|
|
{
|
|
return new Double4( value, 0.0 );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Tests whether one 3D vector is near another 3D vector.
|
|
/// </summary>
|
|
/// <param name="left">The left vector.</param>
|
|
/// <param name="right">The right vector.</param>
|
|
/// <param name="epsilon">The epsilon.</param>
|
|
/// <returns><c>true</c> if left and right are near another 3D, <c>false</c> otherwise</returns>
|
|
public static bool NearEqual( Double3 left, Double3 right, Double3 epsilon )
|
|
{
|
|
return NearEqual( ref left, ref right, ref epsilon );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Tests whether one 3D vector is near another 3D vector.
|
|
/// </summary>
|
|
/// <param name="left">The left vector.</param>
|
|
/// <param name="right">The right vector.</param>
|
|
/// <param name="epsilon">The epsilon.</param>
|
|
/// <returns><c>true</c> if left and right are near another 3D, <c>false</c> otherwise</returns>
|
|
public static bool NearEqual( ref Double3 left, ref Double3 right, ref Double3 epsilon )
|
|
{
|
|
return MathUtil.WithinEpsilon( (float)left.X, (float)right.X, (float)epsilon.X ) &&
|
|
MathUtil.WithinEpsilon( (float)left.Y, (float)right.Y, (float)epsilon.Y ) &&
|
|
MathUtil.WithinEpsilon( (float)left.Z, (float)right.Z, (float)epsilon.Z );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns a <see cref="System.String"/> that represents this instance.
|
|
/// </summary>
|
|
/// <returns>
|
|
/// A <see cref="System.String"/> that represents this instance.
|
|
/// </returns>
|
|
public override string ToString()
|
|
{
|
|
return string.Format( CultureInfo.CurrentCulture, "X:{0} Y:{1} Z:{2}", X, Y, Z );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns a <see cref="System.String"/> that represents this instance.
|
|
/// </summary>
|
|
/// <param name="format">The format.</param>
|
|
/// <returns>
|
|
/// A <see cref="System.String"/> that represents this instance.
|
|
/// </returns>
|
|
public string ToString( string format )
|
|
{
|
|
if( format == null )
|
|
return ToString();
|
|
|
|
return string.Format( CultureInfo.CurrentCulture, "X:{0} Y:{1} Z:{2}", X.ToString( format, CultureInfo.CurrentCulture ),
|
|
Y.ToString( format, CultureInfo.CurrentCulture ), Z.ToString( format, CultureInfo.CurrentCulture ) );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns a <see cref="System.String"/> that represents this instance.
|
|
/// </summary>
|
|
/// <param name="formatProvider">The format provider.</param>
|
|
/// <returns>
|
|
/// A <see cref="System.String"/> that represents this instance.
|
|
/// </returns>
|
|
public string ToString( IFormatProvider formatProvider )
|
|
{
|
|
return string.Format( formatProvider, "X:{0} Y:{1} Z:{2}", X, Y, Z );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns a <see cref="System.String"/> that represents this instance.
|
|
/// </summary>
|
|
/// <param name="format">The format.</param>
|
|
/// <param name="formatProvider">The format provider.</param>
|
|
/// <returns>
|
|
/// A <see cref="System.String"/> that represents this instance.
|
|
/// </returns>
|
|
public string ToString( string format, IFormatProvider formatProvider )
|
|
{
|
|
if( format == null )
|
|
return ToString( formatProvider );
|
|
|
|
return string.Format( formatProvider, "X:{0} Y:{1} Z:{2}", X.ToString( format, formatProvider ),
|
|
Y.ToString( format, formatProvider ), Z.ToString( format, formatProvider ) );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Returns a hash code for this instance.
|
|
/// </summary>
|
|
/// <returns>
|
|
/// A hash code for this instance, suitable for use in hashing algorithms and data structures like a hash table.
|
|
/// </returns>
|
|
public override int GetHashCode()
|
|
{
|
|
return X.GetHashCode() + Y.GetHashCode() + Z.GetHashCode();
|
|
}
|
|
|
|
/// <summary>
|
|
/// Determines whether the specified <see cref="math.Double3"/> is equal to this instance.
|
|
/// </summary>
|
|
/// <param name="other">The <see cref="math.Double3"/> to compare with this instance.</param>
|
|
/// <returns>
|
|
/// <c>true</c> if the specified <see cref="math.Double3"/> is equal to this instance; otherwise, <c>false</c>.
|
|
/// </returns>
|
|
public bool Equals( Double3 other )
|
|
{
|
|
return ( (double)Math.Abs( other.X - X ) < MathUtil.ZeroTolerance &&
|
|
(double)Math.Abs( other.Y - Y ) < MathUtil.ZeroTolerance &&
|
|
(double)Math.Abs( other.Z - Z ) < MathUtil.ZeroTolerance );
|
|
}
|
|
|
|
/// <summary>
|
|
/// Determines whether the specified <see cref="System.Object"/> is equal to this instance.
|
|
/// </summary>
|
|
/// <param name="value">The <see cref="System.Object"/> to compare with this instance.</param>
|
|
/// <returns>
|
|
/// <c>true</c> if the specified <see cref="System.Object"/> is equal to this instance; otherwise, <c>false</c>.
|
|
/// </returns>
|
|
public override bool Equals( object value )
|
|
{
|
|
if( value == null )
|
|
return false;
|
|
|
|
if( value.GetType() != GetType() )
|
|
return false;
|
|
|
|
return Equals( (Double3)value );
|
|
}
|
|
|
|
|
|
#if WPFInterop
|
|
/// <summary>
|
|
/// Performs an implicit conversion from <see cref="math.Double3"/> to <see cref="System.Windows.Media.Media3D.Double3D"/>.
|
|
/// </summary>
|
|
/// <param name="value">The value.</param>
|
|
/// <returns>The result of the conversion.</returns>
|
|
public static implicit operator System.Windows.Media.Media3D.Double3D(Double3 value)
|
|
{
|
|
return new System.Windows.Media.Media3D.Double3D(value.X, value.Y, value.Z);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs an explicit conversion from <see cref="System.Windows.Media.Media3D.Double3D"/> to <see cref="math.Double3"/>.
|
|
/// </summary>
|
|
/// <param name="value">The value.</param>
|
|
/// <returns>The result of the conversion.</returns>
|
|
public static explicit operator Double3(System.Windows.Media.Media3D.Double3D value)
|
|
{
|
|
return new Double3((double)value.X, (double)value.Y, (double)value.Z);
|
|
}
|
|
#endif
|
|
|
|
#if XnaInterop
|
|
/// <summary>
|
|
/// Performs an implicit conversion from <see cref="math.Double3"/> to <see cref="Microsoft.Xna.Framework.Vector3"/>.
|
|
/// </summary>
|
|
/// <param name="value">The value.</param>
|
|
/// <returns>The result of the conversion.</returns>
|
|
public static implicit operator Microsoft.Xna.Framework.Vector3(Double3 value)
|
|
{
|
|
return new Microsoft.Xna.Framework.Vector3(value.X, value.Y, value.Z);
|
|
}
|
|
|
|
/// <summary>
|
|
/// Performs an implicit conversion from <see cref="Microsoft.Xna.Framework.Vector3"/> to <see cref="math.Double3"/>.
|
|
/// </summary>
|
|
/// <param name="value">The value.</param>
|
|
/// <returns>The result of the conversion.</returns>
|
|
public static implicit operator Double3(Microsoft.Xna.Framework.Vector3 value)
|
|
{
|
|
return new Double3(value.X, value.Y, value.Z);
|
|
}
|
|
#endif
|
|
}
|
|
}
|