// Copyright (c) Xenko contributors (https://xenko.com) and Silicon Studio Corp. (https://www.siliconstudio.co.jp)
// Distributed under the MIT license. See the LICENSE.md file in the project root for more information.
//
// -----------------------------------------------------------------------------
// Original code from SlimMath project. http://code.google.com/p/slimmath/
// Greetings to SlimDX Group. Original code published with the following license:
// -----------------------------------------------------------------------------
/*
* Copyright (c) 2007-2011 SlimDX Group
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
using System;
using System.Globalization;
using System.Runtime.InteropServices;
using System.Runtime.Serialization;
namespace math
{
///
/// Represents a three dimensional mathematical vector.
///
[DataContract( Name = "Int3")]
[DataStyle(DataStyle.Compact)]
[StructLayout(LayoutKind.Sequential, Pack = 4)]
public struct Int3 : IEquatable, IFormattable
{
///
/// The size of the type, in bytes.
///
public static readonly int SizeInBytes = Utilities.SizeOf();
///
/// A with all of its components set to zero.
///
public static readonly Int3 Zero = new Int3();
///
/// The X unit (1, 0, 0).
///
public static readonly Int3 UnitX = new Int3(1, 0, 0);
///
/// The Y unit (0, 1, 0).
///
public static readonly Int3 UnitY = new Int3(0, 1, 0);
///
/// The Z unit (0, 0, 1).
///
public static readonly Int3 UnitZ = new Int3(0, 0, 1);
///
/// A with all of its components set to one.
///
public static readonly Int3 One = new Int3(1, 1, 1);
///
/// The X component of the vector.
///
[DataMember( Order = 0 )]
public int X;
///
/// The Y component of the vector.
///
[DataMember( Order = 1 )]
public int Y;
///
/// The Z component of the vector.
///
[DataMember( Order = 2 )]
public int Z;
///
/// Initializes a new instance of the struct.
///
/// The value that will be assigned to all components.
public Int3(int value)
{
X = value;
Y = value;
Z = value;
}
///
/// Initializes a new instance of the struct.
///
/// Initial value for the X component of the vector.
/// Initial value for the Y component of the vector.
/// Initial value for the Z component of the vector.
public Int3(int x, int y, int z)
{
X = x;
Y = y;
Z = z;
}
///
/// Initializes a new instance of the struct.
///
/// A vector containing the values with which to initialize the X and Y components.
/// Initial value for the Z component of the vector.
public Int3(Vec2 value, int z)
{
X = (int)value.X;
Y = (int)value.Y;
Z = z;
}
///
/// Initializes a new instance of the struct.
///
/// The values to assign to the X, Y, and Z components of the vector. This must be an array with three elements.
/// Thrown when is null.
/// Thrown when contains more or less than three elements.
public Int3(int[] values)
{
if (values == null)
throw new ArgumentNullException("values");
if (values.Length != 3)
throw new ArgumentOutOfRangeException("values", "There must be three and only three input values for Int3.");
X = values[0];
Y = values[1];
Z = values[2];
}
///
/// Gets or sets the component at the specified index.
///
/// The value of the X, Y, or Z component, depending on the index.
/// The index of the component to access. Use 0 for the X component, 1 for the Y component, and 2 for the Z component.
/// The value of the component at the specified index.
/// Thrown when the is out of the range [0, 2].
public int this[int index]
{
get
{
switch (index)
{
case 0: return X;
case 1: return Y;
case 2: return Z;
}
throw new ArgumentOutOfRangeException("index", "Indices for Int3 run from 0 to 2, inclusive.");
}
set
{
switch (index)
{
case 0: X = value; break;
case 1: Y = value; break;
case 2: Z = value; break;
default: throw new ArgumentOutOfRangeException("index", "Indices for Int3 run from 0 to 2, inclusive.");
}
}
}
///
/// Calculates the length of the vector.
///
/// The length of the vector.
///
/// may be preferred when only the relative length is needed
/// and speed is of the essence.
///
public int Length()
{
return (int)Math.Sqrt((X * X) + (Y * Y) + (Z * Z));
}
///
/// Calculates the squared length of the vector.
///
/// The squared length of the vector.
///
/// This method may be preferred to when only a relative length is needed
/// and speed is of the essence.
///
public int LengthSquared()
{
return (X * X) + (Y * Y) + (Z * Z);
}
///
/// Raises the exponent for each components.
///
/// The exponent.
public void Pow(int exponent)
{
X = (int)Math.Pow(X, exponent);
Y = (int)Math.Pow(Y, exponent);
Z = (int)Math.Pow(Z, exponent);
}
///
/// Creates an array containing the elements of the vector.
///
/// A three-element array containing the components of the vector.
public int[] ToArray()
{
return new int[] { X, Y, Z };
}
///
/// Adds two vectors.
///
/// The first vector to add.
/// The second vector to add.
/// When the method completes, contains the sum of the two vectors.
public static void Add(ref Int3 left, ref Int3 right, out Int3 result)
{
result = new Int3(left.X + right.X, left.Y + right.Y, left.Z + right.Z);
}
///
/// Adds two vectors.
///
/// The first vector to add.
/// The second vector to add.
/// The sum of the two vectors.
public static Int3 Add(Int3 left, Int3 right)
{
return new Int3(left.X + right.X, left.Y + right.Y, left.Z + right.Z);
}
///
/// Subtracts two vectors.
///
/// The first vector to subtract.
/// The second vector to subtract.
/// When the method completes, contains the difference of the two vectors.
public static void Subtract(ref Int3 left, ref Int3 right, out Int3 result)
{
result = new Int3(left.X - right.X, left.Y - right.Y, left.Z - right.Z);
}
///
/// Subtracts two vectors.
///
/// The first vector to subtract.
/// The second vector to subtract.
/// The difference of the two vectors.
public static Int3 Subtract(Int3 left, Int3 right)
{
return new Int3(left.X - right.X, left.Y - right.Y, left.Z - right.Z);
}
///
/// Scales a vector by the given value.
///
/// The vector to scale.
/// The amount by which to scale the vector.
/// When the method completes, contains the scaled vector.
public static void Multiply(ref Int3 value, int scale, out Int3 result)
{
result = new Int3(value.X * scale, value.Y * scale, value.Z * scale);
}
///
/// Scales a vector by the given value.
///
/// The vector to scale.
/// The amount by which to scale the vector.
/// The scaled vector.
public static Int3 Multiply(Int3 value, int scale)
{
return new Int3(value.X * scale, value.Y * scale, value.Z * scale);
}
///
/// Modulates a vector with another by performing component-wise multiplication.
///
/// The first vector to modulate.
/// The second vector to modulate.
/// When the method completes, contains the modulated vector.
public static void Modulate(ref Int3 left, ref Int3 right, out Int3 result)
{
result = new Int3(left.X * right.X, left.Y * right.Y, left.Z * right.Z);
}
///
/// Modulates a vector with another by performing component-wise multiplication.
///
/// The first vector to modulate.
/// The second vector to modulate.
/// The modulated vector.
public static Int3 Modulate(Int3 left, Int3 right)
{
return new Int3(left.X * right.X, left.Y * right.Y, left.Z * right.Z);
}
///
/// Scales a vector by the given value.
///
/// The vector to scale.
/// The amount by which to scale the vector.
/// When the method completes, contains the scaled vector.
public static void Divide(ref Int3 value, int scale, out Int3 result)
{
result = new Int3(value.X / scale, value.Y / scale, value.Z / scale);
}
///
/// Scales a vector by the given value.
///
/// The vector to scale.
/// The amount by which to scale the vector.
/// The scaled vector.
public static Int3 Divide(Int3 value, int scale)
{
return new Int3(value.X / scale, value.Y / scale, value.Z / scale);
}
///
/// Reverses the direction of a given vector.
///
/// The vector to negate.
/// When the method completes, contains a vector facing in the opposite direction.
public static void Negate(ref Int3 value, out Int3 result)
{
result = new Int3(-value.X, -value.Y, -value.Z);
}
///
/// Reverses the direction of a given vector.
///
/// The vector to negate.
/// A vector facing in the opposite direction.
public static Int3 Negate(Int3 value)
{
return new Int3(-value.X, -value.Y, -value.Z);
}
///
/// Restricts a value to be within a specified range.
///
/// The value to clamp.
/// The minimum value.
/// The maximum value.
/// When the method completes, contains the clamped value.
public static void Clamp(ref Int3 value, ref Int3 min, ref Int3 max, out Int3 result)
{
int x = value.X;
x = (x > max.X) ? max.X : x;
x = (x < min.X) ? min.X : x;
int y = value.Y;
y = (y > max.Y) ? max.Y : y;
y = (y < min.Y) ? min.Y : y;
int z = value.Z;
z = (z > max.Z) ? max.Z : z;
z = (z < min.Z) ? min.Z : z;
result = new Int3(x, y, z);
}
///
/// Restricts a value to be within a specified range.
///
/// The value to clamp.
/// The minimum value.
/// The maximum value.
/// The clamped value.
public static Int3 Clamp(Int3 value, Int3 min, Int3 max)
{
Int3 result;
Clamp(ref value, ref min, ref max, out result);
return result;
}
///
/// Calculates the dot product of two vectors.
///
/// First source vector.
/// Second source vector.
/// When the method completes, contains the dot product of the two vectors.
public static void Dot(ref Int3 left, ref Int3 right, out int result)
{
result = (left.X * right.X) + (left.Y * right.Y) + (left.Z * right.Z);
}
///
/// Calculates the dot product of two vectors.
///
/// First source vector.
/// Second source vector.
/// The dot product of the two vectors.
public static int Dot(Int3 left, Int3 right)
{
return (left.X * right.X) + (left.Y * right.Y) + (left.Z * right.Z);
}
///
/// Performs a linear interpolation between two vectors.
///
/// Start vector.
/// End vector.
/// Value between 0 and 1 indicating the weight of .
/// When the method completes, contains the linear interpolation of the two vectors.
///
/// This method performs the linear interpolation based on the following formula.
/// start + (end - start) * amount
/// Passing a value of 0 will cause to be returned; a value of 1 will cause to be returned.
///
public static void Lerp(ref Int3 start, ref Int3 end, float amount, out Int3 result)
{
result.X = (int)(start.X + ((end.X - start.X) * amount));
result.Y = (int)(start.Y + ((end.Y - start.Y) * amount));
result.Z = (int)(start.Z + ((end.Z - start.Z) * amount));
}
///
/// Performs a linear interpolation between two vectors.
///
/// Start vector.
/// End vector.
/// Value between 0 and 1 indicating the weight of .
/// The linear interpolation of the two vectors.
///
/// This method performs the linear interpolation based on the following formula.
/// start + (end - start) * amount
/// Passing a value of 0 will cause to be returned; a value of 1 will cause to be returned.
///
public static Int3 Lerp(Int3 start, Int3 end, float amount)
{
Int3 result;
Lerp(ref start, ref end, amount, out result);
return result;
}
///
/// Performs a cubic interpolation between two vectors.
///
/// Start vector.
/// End vector.
/// Value between 0 and 1 indicating the weight of .
/// When the method completes, contains the cubic interpolation of the two vectors.
public static void SmoothStep(ref Int3 start, ref Int3 end, float amount, out Int3 result)
{
amount = (amount > 1) ? 1 : ((amount < 0) ? 0 : amount);
amount = (amount * amount) * (3 - (2 * amount));
result.X = (int)(start.X + ((end.X - start.X) * amount));
result.Y = (int)(start.Y + ((end.Y - start.Y) * amount));
result.Z = (int)(start.Z + ((end.Z - start.Z) * amount));
}
///
/// Performs a cubic interpolation between two vectors.
///
/// Start vector.
/// End vector.
/// Value between 0 and 1 indicating the weight of .
/// The cubic interpolation of the two vectors.
public static Int3 SmoothStep(Int3 start, Int3 end, float amount)
{
Int3 result;
SmoothStep(ref start, ref end, amount, out result);
return result;
}
///
/// Returns a vector containing the smallest components of the specified vectors.
///
/// The first source vector.
/// The second source vector.
/// When the method completes, contains an new vector composed of the largest components of the source vectors.
public static void Max(ref Int3 left, ref Int3 right, out Int3 result)
{
result.X = (left.X > right.X) ? left.X : right.X;
result.Y = (left.Y > right.Y) ? left.Y : right.Y;
result.Z = (left.Z > right.Z) ? left.Z : right.Z;
}
///
/// Returns a vector containing the largest components of the specified vectors.
///
/// The first source vector.
/// The second source vector.
/// A vector containing the largest components of the source vectors.
public static Int3 Max(Int3 left, Int3 right)
{
Int3 result;
Max(ref left, ref right, out result);
return result;
}
///
/// Returns a vector containing the smallest components of the specified vectors.
///
/// The first source vector.
/// The second source vector.
/// When the method completes, contains an new vector composed of the smallest components of the source vectors.
public static void Min(ref Int3 left, ref Int3 right, out Int3 result)
{
result.X = (left.X < right.X) ? left.X : right.X;
result.Y = (left.Y < right.Y) ? left.Y : right.Y;
result.Z = (left.Z < right.Z) ? left.Z : right.Z;
}
///
/// Returns a vector containing the smallest components of the specified vectors.
///
/// The first source vector.
/// The second source vector.
/// A vector containing the smallest components of the source vectors.
public static Int3 Min(Int3 left, Int3 right)
{
Int3 result;
Min(ref left, ref right, out result);
return result;
}
///
/// Adds two vectors.
///
/// The first vector to add.
/// The second vector to add.
/// The sum of the two vectors.
public static Int3 operator +(Int3 left, Int3 right)
{
return new Int3(left.X + right.X, left.Y + right.Y, left.Z + right.Z);
}
///
/// Assert a vector (return it unchanged).
///
/// The vector to assert (unchange).
/// The asserted (unchanged) vector.
public static Int3 operator +(Int3 value)
{
return value;
}
///
/// Subtracts two vectors.
///
/// The first vector to subtract.
/// The second vector to subtract.
/// The difference of the two vectors.
public static Int3 operator -(Int3 left, Int3 right)
{
return new Int3(left.X - right.X, left.Y - right.Y, left.Z - right.Z);
}
///
/// Reverses the direction of a given vector.
///
/// The vector to negate.
/// A vector facing in the opposite direction.
public static Int3 operator -(Int3 value)
{
return new Int3(-value.X, -value.Y, -value.Z);
}
///
/// Scales a vector by the given value.
///
/// The vector to scale.
/// The amount by which to scale the vector.
/// The scaled vector.
public static Int3 operator *(float scale, Int3 value)
{
return new Int3((int)(value.X * scale), (int)(value.Y * scale), (int)(value.Z * scale));
}
///
/// Scales a vector by the given value.
///
/// The vector to scale.
/// The amount by which to scale the vector.
/// The scaled vector.
public static Int3 operator *(Int3 value, float scale)
{
return new Int3((int)(value.X * scale), (int)(value.Y * scale), (int)(value.Z * scale));
}
///
/// Scales a vector by the given value.
///
/// The vector to scale.
/// The amount by which to scale the vector.
/// The scaled vector.
public static Int3 operator /(Int3 value, float scale)
{
return new Int3((int)(value.X / scale), (int)(value.Y / scale), (int)(value.Z / scale));
}
///
/// Tests for equality between two objects.
///
/// The first value to compare.
/// The second value to compare.
/// true if has the same value as ; otherwise, false.
public static bool operator ==(Int3 left, Int3 right)
{
return left.Equals(right);
}
///
/// Tests for inequality between two objects.
///
/// The first value to compare.
/// The second value to compare.
/// true if has a different value than ; otherwise, false.
public static bool operator !=(Int3 left, Int3 right)
{
return !left.Equals(right);
}
///
/// Performs an explicit conversion from to .
///
/// The value.
/// The result of the conversion.
public static explicit operator Vec2(Int3 value)
{
return new Vec2(value.X, value.Y);
}
///
/// Performs an explicit conversion from to .
///
/// The value.
/// The result of the conversion.
public static explicit operator Vector3(Int3 value)
{
return new Vector3(value.X, value.Y, value.Z);
}
///
/// Performs an explicit conversion from to .
///
/// The value.
/// The result of the conversion.
public static explicit operator Vector4(Int3 value)
{
return new Vector4(value.X, value.Y, value.Z, 0);
}
///
/// Returns a that represents this instance.
///
///
/// A that represents this instance.
///
public override string ToString()
{
return string.Format(CultureInfo.CurrentCulture, "X:{0} Y:{1} Z:{2}", X, Y, Z);
}
///
/// Returns a that represents this instance.
///
/// The format.
///
/// A that represents this instance.
///
public string ToString(string format)
{
if (format == null)
return ToString();
return string.Format(CultureInfo.CurrentCulture, "X:{0} Y:{1} Z:{2}", X.ToString(format, CultureInfo.CurrentCulture),
Y.ToString(format, CultureInfo.CurrentCulture), Z.ToString(format, CultureInfo.CurrentCulture));
}
///
/// Returns a that represents this instance.
///
/// The format provider.
///
/// A that represents this instance.
///
public string ToString(IFormatProvider formatProvider)
{
return string.Format(formatProvider, "X:{0} Y:{1} Z:{2}", X, Y, Z);
}
///
/// Returns a that represents this instance.
///
/// The format.
/// The format provider.
///
/// A that represents this instance.
///
public string ToString(string format, IFormatProvider formatProvider)
{
if (format == null)
return ToString(formatProvider);
return string.Format(formatProvider, "X:{0} Y:{1} Z:{2}", X.ToString(format, formatProvider),
Y.ToString(format, formatProvider), Z.ToString(format, formatProvider));
}
///
/// Returns a hash code for this instance.
///
///
/// A hash code for this instance, suitable for use in hashing algorithms and data structures like a hash table.
///
public override int GetHashCode()
{
return X.GetHashCode() + Y.GetHashCode() + Z.GetHashCode();
}
///
/// Determines whether the specified is equal to this instance.
///
/// The to compare with this instance.
///
/// true if the specified is equal to this instance; otherwise, false.
///
public bool Equals(Int3 other)
{
return ((float)Math.Abs(other.X - X) < MathUtil.ZeroTolerance &&
(float)Math.Abs(other.Y - Y) < MathUtil.ZeroTolerance &&
(float)Math.Abs(other.Z - Z) < MathUtil.ZeroTolerance);
}
///
/// Determines whether the specified is equal to this instance.
///
/// The to compare with this instance.
///
/// true if the specified is equal to this instance; otherwise, false.
///
public override bool Equals(object value)
{
if (value == null)
return false;
if (value.GetType() != GetType())
return false;
return Equals((Int3)value);
}
#if WPFInterop
///
/// Performs an implicit conversion from to .
///
/// The value.
/// The result of the conversion.
public static implicit operator System.Windows.Media.Media3D.Int3D(Int3 value)
{
return new System.Windows.Media.Media3D.Int3D(value.X, value.Y, value.Z);
}
///
/// Performs an explicit conversion from to .
///
/// The value.
/// The result of the conversion.
public static explicit operator Int3(System.Windows.Media.Media3D.Int3D value)
{
return new Int3((float)value.X, (float)value.Y, (float)value.Z);
}
#endif
#if XnaInterop
///
/// Performs an implicit conversion from to .
///
/// The value.
/// The result of the conversion.
public static implicit operator Microsoft.Xna.Framework.Int3(Int3 value)
{
return new Microsoft.Xna.Framework.Int3(value.X, value.Y, value.Z);
}
///
/// Performs an implicit conversion from to .
///
/// The value.
/// The result of the conversion.
public static implicit operator Int3(Microsoft.Xna.Framework.Int3 value)
{
return new Int3(value.X, value.Y, value.Z);
}
#endif
}
}