// Copyright (c) Xenko contributors (https://xenko.com) and Silicon Studio Corp. (https://www.siliconstudio.co.jp) // Distributed under the MIT license. See the LICENSE.md file in the project root for more information. // // ----------------------------------------------------------------------------- // Original code from SlimMath project. http://code.google.com/p/slimmath/ // Greetings to SlimDX Group. Original code published with the following license: // ----------------------------------------------------------------------------- /* * Copyright (c) 2007-2011 SlimDX Group * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ using System; using System.Globalization; using System.Runtime.InteropServices; using System.Runtime.Serialization; namespace math { /// /// Represents a color in the form of rgba. /// [DataContract( Name = "Color4")] [DataStyle(DataStyle.Compact)] [StructLayout(LayoutKind.Sequential, Pack = 4)] public struct Color4 : IEquatable, IFormattable { private const string ToStringFormat = "A:{0} R:{1} G:{2} B:{3}"; /// /// The Black color (0, 0, 0, 1). /// public static readonly Color4 Black = new Color4(0.0f, 0.0f, 0.0f, 1.0f); /// /// The White color (1, 1, 1, 1). /// public static readonly Color4 White = new Color4(1.0f, 1.0f, 1.0f, 1.0f); /// /// The red component of the color. /// [DataMember( Order = 0 )] public float R; /// /// The green component of the color. /// [DataMember( Order = 1 )] public float G; /// /// The blue component of the color. /// [DataMember( Order = 2 )] public float B; /// /// The alpha component of the color. /// [DataMember( Order = 3 )] public float A; /// /// Initializes a new instance of the struct. /// /// The value that will be assigned to all components. public Color4(float value) { A = R = G = B = value; } /// /// Initializes a new instance of the struct. /// /// The red component of the color. /// The green component of the color. /// The blue component of the color. /// The alpha component of the color. public Color4(float red, float green, float blue, float alpha) { R = red; G = green; B = blue; A = alpha; } /// /// Initializes a new instance of the struct. /// /// The red, green, blue, and alpha components of the color. public Color4(Vector4 value) { R = value.X; G = value.Y; B = value.Z; A = value.W; } /// /// Initializes a new instance of the struct. /// /// The red, green, and blue components of the color. /// The alpha component of the color. public Color4(Vector3 value, float alpha) { R = value.X; G = value.Y; B = value.Z; A = alpha; } /// /// Initializes a new instance of the struct. /// /// A packed integer containing all four color components in RGBA order. public Color4(uint rgba) { A = ((rgba >> 24) & 255) / 255.0f; B = ((rgba >> 16) & 255) / 255.0f; G = ((rgba >> 8) & 255) / 255.0f; R = (rgba & 255) / 255.0f; } /// /// Initializes a new instance of the struct. /// /// A packed integer containing all four color components in RGBA order. public Color4(int rgba) { A = ((rgba >> 24) & 255) / 255.0f; B = ((rgba >> 16) & 255) / 255.0f; G = ((rgba >> 8) & 255) / 255.0f; R = (rgba & 255) / 255.0f; } /// /// Initializes a new instance of the struct. /// /// The values to assign to the red, green, blue, and alpha components of the color. This must be an array with four elements. /// Thrown when is null. /// Thrown when contains more or less than four elements. public Color4(float[] values) { if (values == null) throw new ArgumentNullException(nameof(values)); if (values.Length != 4) throw new ArgumentOutOfRangeException(nameof(values), "There must be four and only four input values for Color4."); R = values[0]; G = values[1]; B = values[2]; A = values[3]; } /// /// Initializes a new instance of the struct. /// /// used to initialize the color. public Color4(Color3 color) { R = color.R; G = color.G; B = color.B; A = 1.0f; } /// /// Initializes a new instance of the struct. /// /// used to initialize the color. public Color4(Color color) { R = color.R / 255.0f; G = color.G / 255.0f; B = color.B / 255.0f; A = color.A / 255.0f; } /// /// Initializes a new instance of the struct. /// /// used to initialize the color. public Color4(ColorBGRA color) { R = color.R / 255.0f; G = color.G / 255.0f; B = color.B / 255.0f; A = color.A / 255.0f; } /// /// Initializes a new instance of the struct. /// /// used to initialize the color. /// The alpha component of the color. public Color4(Color3 color, float alpha) { R = color.R; G = color.G; B = color.B; A = alpha; } /// /// Gets or sets the component at the specified index. /// /// The value of the red, green, blue, and alpha components, depending on the index. /// The index of the component to access. Use 0 for the alpha component, 1 for the red component, 2 for the green component, and 3 for the blue component. /// The value of the component at the specified index. /// Thrown when the is out of the range [0, 3]. public float this[int index] { get { switch (index) { case 0: return R; case 1: return G; case 2: return B; case 3: return A; } throw new ArgumentOutOfRangeException(nameof(index), "Indices for Color4 run from 0 to 3, inclusive."); } set { switch (index) { case 0: R = value; break; case 1: G = value; break; case 2: B = value; break; case 3: A = value; break; default: throw new ArgumentOutOfRangeException(nameof(index), "Indices for Color4 run from 0 to 3, inclusive."); } } } /// /// Converts the color into a packed integer. /// /// A packed integer containing all four color components. public int ToBgra() { uint a = (uint)(A * 255.0f) & 255; uint r = (uint)(R * 255.0f) & 255; uint g = (uint)(G * 255.0f) & 255; uint b = (uint)(B * 255.0f) & 255; uint value = b; value |= g << 8; value |= r << 16; value |= a << 24; return (int)value; } /// /// Converts the color into a packed integer. /// public void ToBgra(out byte r, out byte g, out byte b, out byte a) { a = (byte)(A * 255.0f); r = (byte)(R * 255.0f); g = (byte)(G * 255.0f); b = (byte)(B * 255.0f); } /// /// Converts the color into a packed integer. /// /// A packed integer containing all four color components. public int ToRgba() { uint a = (uint)(A * 255.0f) & 255; uint r = (uint)(R * 255.0f) & 255; uint g = (uint)(G * 255.0f) & 255; uint b = (uint)(B * 255.0f) & 255; uint value = r; value |= g << 8; value |= b << 16; value |= a << 24; return (int)value; } /// /// Converts the color into a three component vector. /// /// A three component vector containing the red, green, and blue components of the color. public Vector3 ToVector3() { return new Vector3(R, G, B); } /// /// Converts the color into a four component vector. /// /// A four component vector containing all four color components. public Vector4 ToVector4() { return new Vector4(R, G, B, A); } /// /// Creates an array containing the elements of the color. /// /// A four-element array containing the components of the color. public float[] ToArray() { return new[] { R, G, B, A }; } /// /// Converts this color from linear space to sRGB space. /// /// A color3 in sRGB space. public Color4 ToSRgb() { return new Color4(MathUtil.LinearToSRgb(R), MathUtil.LinearToSRgb(G), MathUtil.LinearToSRgb(B), A); } /// /// Converts this color from sRGB space to linear space. /// /// A color4 in linear space. public Color4 ToLinear() { return new Color4(MathUtil.SRgbToLinear(R), MathUtil.SRgbToLinear(G), MathUtil.SRgbToLinear(B), A); } /// /// Adds two colors. /// /// The first color to add. /// The second color to add. /// When the method completes, completes the sum of the two colors. public static void Add(ref Color4 left, ref Color4 right, out Color4 result) { result.A = left.A + right.A; result.R = left.R + right.R; result.G = left.G + right.G; result.B = left.B + right.B; } /// /// Adds two colors. /// /// The first color to add. /// The second color to add. /// The sum of the two colors. public static Color4 Add(Color4 left, Color4 right) { return new Color4(left.R + right.R, left.G + right.G, left.B + right.B, left.A + right.A); } /// /// Subtracts two colors. /// /// The first color to subtract. /// The second color to subtract. /// WHen the method completes, contains the difference of the two colors. public static void Subtract(ref Color4 left, ref Color4 right, out Color4 result) { result.A = left.A - right.A; result.R = left.R - right.R; result.G = left.G - right.G; result.B = left.B - right.B; } /// /// Subtracts two colors. /// /// The first color to subtract. /// The second color to subtract /// The difference of the two colors. public static Color4 Subtract(Color4 left, Color4 right) { return new Color4(left.R - right.R, left.G - right.G, left.B - right.B, left.A - right.A); } /// /// Modulates two colors. /// /// The first color to modulate. /// The second color to modulate. /// When the method completes, contains the modulated color. public static void Modulate(ref Color4 left, ref Color4 right, out Color4 result) { result.A = left.A * right.A; result.R = left.R * right.R; result.G = left.G * right.G; result.B = left.B * right.B; } /// /// Modulates two colors. /// /// The first color to modulate. /// The second color to modulate. /// The modulated color. public static Color4 Modulate(Color4 left, Color4 right) { return new Color4(left.R * right.R, left.G * right.G, left.B * right.B, left.A * right.A); } /// /// Scales a color. /// /// The color to scale. /// The amount by which to scale. /// When the method completes, contains the scaled color. public static void Scale(ref Color4 value, float scale, out Color4 result) { result.A = value.A * scale; result.R = value.R * scale; result.G = value.G * scale; result.B = value.B * scale; } /// /// Scales a color. /// /// The color to scale. /// The amount by which to scale. /// The scaled color. public static Color4 Scale(Color4 value, float scale) { return new Color4(value.R * scale, value.G * scale, value.B * scale, value.A * scale); } /// /// Negates a color. /// /// The color to negate. /// When the method completes, contains the negated color. public static void Negate(ref Color4 value, out Color4 result) { result.A = 1.0f - value.A; result.R = 1.0f - value.R; result.G = 1.0f - value.G; result.B = 1.0f - value.B; } /// /// Negates a color. /// /// The color to negate. /// The negated color. public static Color4 Negate(Color4 value) { return new Color4(1.0f - value.R, 1.0f - value.G, 1.0f - value.B, 1.0f - value.A); } /// /// Restricts a value to be within a specified range. /// /// The value to clamp. /// The minimum value. /// The maximum value. /// When the method completes, contains the clamped value. public static void Clamp(ref Color4 value, ref Color4 min, ref Color4 max, out Color4 result) { float alpha = value.A; alpha = (alpha > max.A) ? max.A : alpha; alpha = (alpha < min.A) ? min.A : alpha; float red = value.R; red = (red > max.R) ? max.R : red; red = (red < min.R) ? min.R : red; float green = value.G; green = (green > max.G) ? max.G : green; green = (green < min.G) ? min.G : green; float blue = value.B; blue = (blue > max.B) ? max.B : blue; blue = (blue < min.B) ? min.B : blue; result = new Color4(red, green, blue, alpha); } /// /// Restricts a value to be within a specified range. /// /// The value to clamp. /// The minimum value. /// The maximum value. /// The clamped value. public static Color4 Clamp(Color4 value, Color4 min, Color4 max) { Color4 result; Clamp(ref value, ref min, ref max, out result); return result; } /// /// Performs a linear interpolation between two colors. /// /// Start color. /// End color. /// Value between 0 and 1 indicating the weight of . /// When the method completes, contains the linear interpolation of the two colors. /// /// Passing a value of 0 will cause to be returned; a value of 1 will cause to be returned. /// public static void Lerp(ref Color4 start, ref Color4 end, float amount, out Color4 result) { result.R = MathUtil.Lerp(start.R, end.R, amount); result.G = MathUtil.Lerp(start.G, end.G, amount); result.B = MathUtil.Lerp(start.B, end.B, amount); result.A = MathUtil.Lerp(start.A, end.A, amount); } /// /// Performs a linear interpolation between two colors. /// /// Start color. /// End color. /// Value between 0 and 1 indicating the weight of . /// The linear interpolation of the two colors. /// /// Passing a value of 0 will cause to be returned; a value of 1 will cause to be returned. /// public static Color4 Lerp(Color4 start, Color4 end, float amount) { Color4 result; Lerp(ref start, ref end, amount, out result); return result; } /// /// Performs a cubic interpolation between two colors. /// /// Start color. /// End color. /// Value between 0 and 1 indicating the weight of . /// When the method completes, contains the cubic interpolation of the two colors. public static void SmoothStep(ref Color4 start, ref Color4 end, float amount, out Color4 result) { amount = MathUtil.SmoothStep(amount); Lerp(ref start, ref end, amount, out result); } /// /// Performs a cubic interpolation between two colors. /// /// Start color. /// End color. /// Value between 0 and 1 indicating the weight of . /// The cubic interpolation of the two colors. public static Color4 SmoothStep(Color4 start, Color4 end, float amount) { Color4 result; SmoothStep(ref start, ref end, amount, out result); return result; } /// /// Returns a color containing the smallest components of the specified colors. /// /// The first source color. /// The second source color. /// When the method completes, contains an new color composed of the largest components of the source colors. public static void Max(ref Color4 left, ref Color4 right, out Color4 result) { result.A = (left.A > right.A) ? left.A : right.A; result.R = (left.R > right.R) ? left.R : right.R; result.G = (left.G > right.G) ? left.G : right.G; result.B = (left.B > right.B) ? left.B : right.B; } /// /// Returns a color containing the largest components of the specified colors. /// /// The first source color. /// The second source color. /// A color containing the largest components of the source colors. public static Color4 Max(Color4 left, Color4 right) { Color4 result; Max(ref left, ref right, out result); return result; } /// /// Returns a color containing the smallest components of the specified colors. /// /// The first source color. /// The second source color. /// When the method completes, contains an new color composed of the smallest components of the source colors. public static void Min(ref Color4 left, ref Color4 right, out Color4 result) { result.A = (left.A < right.A) ? left.A : right.A; result.R = (left.R < right.R) ? left.R : right.R; result.G = (left.G < right.G) ? left.G : right.G; result.B = (left.B < right.B) ? left.B : right.B; } /// /// Returns a color containing the smallest components of the specified colors. /// /// The first source color. /// The second source color. /// A color containing the smallest components of the source colors. public static Color4 Min(Color4 left, Color4 right) { Color4 result; Min(ref left, ref right, out result); return result; } /// /// Adjusts the contrast of a color. /// /// The color whose contrast is to be adjusted. /// The amount by which to adjust the contrast. /// When the method completes, contains the adjusted color. public static void AdjustContrast(ref Color4 value, float contrast, out Color4 result) { result.A = value.A; result.R = 0.5f + contrast * (value.R - 0.5f); result.G = 0.5f + contrast * (value.G - 0.5f); result.B = 0.5f + contrast * (value.B - 0.5f); } /// /// Adjusts the contrast of a color. /// /// The color whose contrast is to be adjusted. /// The amount by which to adjust the contrast. /// The adjusted color. public static Color4 AdjustContrast(Color4 value, float contrast) { return new Color4( 0.5f + contrast * (value.R - 0.5f), 0.5f + contrast * (value.G - 0.5f), 0.5f + contrast * (value.B - 0.5f), value.A); } /// /// Adjusts the saturation of a color. /// /// The color whose saturation is to be adjusted. /// The amount by which to adjust the saturation. /// When the method completes, contains the adjusted color. public static void AdjustSaturation(ref Color4 value, float saturation, out Color4 result) { float grey = value.R * 0.2125f + value.G * 0.7154f + value.B * 0.0721f; result.A = value.A; result.R = grey + saturation * (value.R - grey); result.G = grey + saturation * (value.G - grey); result.B = grey + saturation * (value.B - grey); } /// /// Adjusts the saturation of a color. /// /// The color whose saturation is to be adjusted. /// The amount by which to adjust the saturation. /// The adjusted color. public static Color4 AdjustSaturation(Color4 value, float saturation) { float grey = value.R * 0.2125f + value.G * 0.7154f + value.B * 0.0721f; return new Color4( grey + saturation * (value.R - grey), grey + saturation * (value.G - grey), grey + saturation * (value.B - grey), value.A); } /// /// Premultiplies the color components by the alpha value. /// /// The color to premultiply. /// A color with premultiplied alpha. public static Color4 PremultiplyAlpha(Color4 value) { return new Color4(value.R * value.A, value.G * value.A, value.B * value.A, value.A); } /// /// Adds two colors. /// /// The first color to add. /// The second color to add. /// The sum of the two colors. public static Color4 operator +(Color4 left, Color4 right) { return new Color4(left.R + right.R, left.G + right.G, left.B + right.B, left.A + right.A); } /// /// Assert a color (return it unchanged). /// /// The color to assert (unchanged). /// The asserted (unchanged) color. public static Color4 operator +(Color4 value) { return value; } /// /// Subtracts two colors. /// /// The first color to subtract. /// The second color to subtract. /// The difference of the two colors. public static Color4 operator -(Color4 left, Color4 right) { return new Color4(left.R - right.R, left.G - right.G, left.B - right.B, left.A - right.A); } /// /// Negates a color. /// /// The color to negate. /// A negated color. public static Color4 operator -(Color4 value) { return new Color4(-value.R, -value.G, -value.B, -value.A); } /// /// Scales a color. /// /// The factor by which to scale the color. /// The color to scale. /// The scaled color. public static Color4 operator *(float scale, Color4 value) { return new Color4(value.R * scale, value.G * scale, value.B * scale, value.A * scale); } /// /// Scales a color. /// /// The factor by which to scale the color. /// The color to scale. /// The scaled color. public static Color4 operator *(Color4 value, float scale) { return new Color4(value.R * scale, value.G * scale, value.B * scale, value.A * scale); } /// /// Modulates two colors. /// /// The first color to modulate. /// The second color to modulate. /// The modulated color. public static Color4 operator *(Color4 left, Color4 right) { return new Color4(left.R * right.R, left.G * right.G, left.B * right.B, left.A * right.A); } /// /// Tests for equality between two objects. /// /// The first value to compare. /// The second value to compare. /// true if has the same value as ; otherwise, false. public static bool operator ==(Color4 left, Color4 right) { return left.Equals(right); } /// /// Tests for inequality between two objects. /// /// The first value to compare. /// The second value to compare. /// true if has a different value than ; otherwise, false. public static bool operator !=(Color4 left, Color4 right) { return !left.Equals(right); } /// /// Performs an explicit conversion from to . /// /// The value. /// The result of the conversion. public static explicit operator Color3(Color4 value) { return new Color3(value.R, value.G, value.B); } /// /// Performs an explicit conversion from to . /// /// The value. /// The result of the conversion. public static explicit operator Vector3(Color4 value) { return new Vector3(value.R, value.G, value.B); } /// /// Performs an implicit conversion from to . /// /// The value. /// The result of the conversion. public static implicit operator Vector4(Color4 value) { return new Vector4(value.R, value.G, value.B, value.A); } /// /// Performs an explicit conversion from to . /// /// The value. /// The result of the conversion. public static explicit operator Color4(Vector3 value) { return new Color4(value.X, value.Y, value.Z, 1.0f); } /// /// Performs an explicit conversion from to . /// /// The value. /// The result of the conversion. public static explicit operator Color4(Vector4 value) { return new Color4(value.X, value.Y, value.Z, value.W); } /// /// Performs an explicit conversion from to . /// /// The value. /// The result of the conversion. public static explicit operator Color4(ColorBGRA value) { return new Color4(value); } /// /// Performs an explicit conversion from to . /// /// The value. /// The result of the conversion. public static explicit operator ColorBGRA(Color4 value) { return new ColorBGRA(value.R, value.G, value.B, value.A); } /// /// Performs an explicit conversion from to . /// /// The value. /// /// The result of the conversion. /// public static explicit operator int(Color4 value) { return value.ToRgba(); } /// /// Performs an explicit conversion from to . /// /// The value. /// /// The result of the conversion. /// public static explicit operator Color4(int value) { return new Color4(value); } /// /// Converts this color to an equivalent , discarding the alpha channel. /// /// An equivalent , discarding the alpha channel. public Color3 ToColor3() { return new Color3(R, G, B); } /// /// Returns a that represents this instance. /// /// /// A that represents this instance. /// public override string ToString() { return ToString(CultureInfo.CurrentCulture); } /// /// Returns a that represents this instance. /// /// The format to apply to each channel (float). /// /// A that represents this instance. /// public string ToString(string format) { return ToString(format, CultureInfo.CurrentCulture); } /// /// Returns a that represents this instance. /// /// The format provider. /// /// A that represents this instance. /// public string ToString(IFormatProvider formatProvider) { return string.Format(formatProvider, ToStringFormat, A, R, G, B); } /// /// Returns a that represents this instance. /// /// The format to apply to each channel (float). /// The format provider. /// /// A that represents this instance. /// public string ToString(string format, IFormatProvider formatProvider) { if (format == null) return ToString(formatProvider); return string.Format(formatProvider, ToStringFormat, A.ToString(format, formatProvider), R.ToString(format, formatProvider), G.ToString(format, formatProvider), B.ToString(format, formatProvider)); } /// /// Returns a hash code for this instance. /// /// /// A hash code for this instance, suitable for use in hashing algorithms and data structures like a hash table. /// public override int GetHashCode() { return A.GetHashCode() + R.GetHashCode() + G.GetHashCode() + B.GetHashCode(); } /// /// Determines whether the specified is equal to this instance. /// /// The to compare with this instance. /// /// true if the specified is equal to this instance; otherwise, false. /// public bool Equals(Color4 other) { return A == other.A && R == other.R && G == other.G && B == other.B; } /// /// Determines whether the specified is equal to this instance. /// /// The to compare with this instance. /// /// true if the specified is equal to this instance; otherwise, false. /// public override bool Equals(object value) { if (value == null) return false; if (!ReferenceEquals(value.GetType(), typeof(Color4))) return false; return Equals((Color4)value); } } }