// Copyright (c) Xenko contributors (https://xenko.com) and Silicon Studio Corp. (https://www.siliconstudio.co.jp) // Distributed under the MIT license. See the LICENSE.md file in the project root for more information. using System; using System.Globalization; using System.Runtime.InteropServices; using System.Runtime.Serialization; namespace math { /// /// Represents a 32-bit color (4 bytes) in the form of RGBA (in byte order: R, G, B, A). /// [DataContract(Name = "Color")] [DataStyle(DataStyle.Compact)] [StructLayout(LayoutKind.Sequential, Size = 4)] public partial struct Color : IEquatable { /// /// The red component of the color. /// [DataMember(Order = 0)] public byte R; /// /// The green component of the color. /// [DataMember( Order = 1 )] public byte G; /// /// The blue component of the color. /// [DataMember( Order = 2 )] public byte B; /// /// The alpha component of the color. /// [DataMember( Order = 3 )] public byte A; /// /// Initializes a new instance of the struct. /// /// The value that will be assigned to all components. public Color(byte value) { A = R = G = B = value; } /// /// Initializes a new instance of the struct. /// /// The value that will be assigned to all components. public Color(float value) { A = R = G = B = ToByte(value); } /// /// Initializes a new instance of the struct. /// /// The red component of the color. /// The green component of the color. /// The blue component of the color. /// The alpha component of the color. public Color(byte red, byte green, byte blue, byte alpha) { R = red; G = green; B = blue; A = alpha; } /// /// Initializes a new instance of the struct. Alpha is set to 255. /// /// The red component of the color. /// The green component of the color. /// The blue component of the color. public Color(byte red, byte green, byte blue) { R = red; G = green; B = blue; A = 255; } /// /// Initializes a new instance of the struct. /// /// The red component of the color. /// The green component of the color. /// The blue component of the color. /// The alpha component of the color. public Color(float red, float green, float blue, float alpha) { R = ToByte(red); G = ToByte(green); B = ToByte(blue); A = ToByte(alpha); } /// /// Initializes a new instance of the struct. Alpha is set to 255. /// /// The red component of the color. /// The green component of the color. /// The blue component of the color. public Color(float red, float green, float blue) { R = ToByte(red); G = ToByte(green); B = ToByte(blue); A = 255; } /// /// Initializes a new instance of the struct. /// /// The red, green, blue, and alpha components of the color. public Color(Vector4 value) { R = ToByte(value.X); G = ToByte(value.Y); B = ToByte(value.Z); A = ToByte(value.W); } /// /// Initializes a new instance of the struct. /// /// The red, green, and blue components of the color. /// The alpha component of the color. public Color(Vector3 value, float alpha) { R = ToByte(value.X); G = ToByte(value.Y); B = ToByte(value.Z); A = ToByte(alpha); } /// /// Initializes a new instance of the struct. Alpha is set to 255. /// /// The red, green, and blue components of the color. public Color(Vector3 value) { R = ToByte(value.X); G = ToByte(value.Y); B = ToByte(value.Z); A = 255; } /// /// Initializes a new instance of the struct. /// /// A packed integer containing all four color components in RGBA order. public Color(uint rgba) { A = (byte)((rgba >> 24) & 255); B = (byte)((rgba >> 16) & 255); G = (byte)((rgba >> 8) & 255); R = (byte)(rgba & 255); } /// /// Initializes a new instance of the struct. /// /// A packed integer containing all four color components in RGBA order. public Color(int rgba) { A = (byte)((rgba >> 24) & 255); B = (byte)((rgba >> 16) & 255); G = (byte)((rgba >> 8) & 255); R = (byte)(rgba & 255); } /// /// Initializes a new instance of the struct. /// /// The values to assign to the red, green, and blue, alpha components of the color. This must be an array with four elements. /// Thrown when is null. /// Thrown when contains more or less than four elements. public Color(float[] values) { if (values == null) throw new ArgumentNullException(nameof(values)); if (values.Length != 4) throw new ArgumentOutOfRangeException(nameof(values), "There must be four and only four input values for Color."); R = ToByte(values[0]); G = ToByte(values[1]); B = ToByte(values[2]); A = ToByte(values[3]); } /// /// Initializes a new instance of the struct. /// /// The values to assign to the alpha, red, green, and blue components of the color. This must be an array with four elements. /// Thrown when is null. /// Thrown when contains more or less than four elements. public Color(byte[] values) { if (values == null) throw new ArgumentNullException(nameof(values)); if (values.Length != 4) throw new ArgumentOutOfRangeException(nameof(values), "There must be four and only four input values for Color."); R = values[0]; G = values[1]; B = values[2]; A = values[3]; } /// /// Gets or sets the component at the specified index. /// /// The value of the alpha, red, green, or blue component, depending on the index. /// The index of the component to access. Use 0 for the alpha component, 1 for the red component, 2 for the green component, and 3 for the blue component. /// The value of the component at the specified index. /// Thrown when the is out of the range [0, 3]. public byte this[int index] { get { switch (index) { case 0: return R; case 1: return G; case 2: return B; case 3: return A; } throw new ArgumentOutOfRangeException(nameof(index), "Indices for Color run from 0 to 3, inclusive."); } set { switch (index) { case 0: R = value; break; case 1: G = value; break; case 2: B = value; break; case 3: A = value; break; default: throw new ArgumentOutOfRangeException(nameof(index), "Indices for Color run from 0 to 3, inclusive."); } } } /// /// Converts the color into a packed integer. /// /// A packed integer containing all four color components. public int ToBgra() { int value = B; value |= G << 8; value |= R << 16; value |= A << 24; return value; } /// /// Converts the color into a packed integer. /// /// A packed integer containing all four color components. public int ToRgba() { int value = R; value |= G << 8; value |= B << 16; value |= A << 24; return value; } /// /// Converts the color into a packed integer. /// /// A packed integer containing all four color components. public int ToArgb() { int value = A; value |= R << 8; value |= G << 16; value |= B << 24; return value; } /// /// Converts the color into a packed integer. /// /// A packed integer containing all four color components. public int ToAbgr() { int value = A; value |= B << 8; value |= G << 16; value |= R << 24; return value; } /// /// Converts the color into a three component vector. /// /// A three component vector containing the red, green, and blue components of the color. public Vector3 ToVector3() { return new Vector3(R / 255.0f, G / 255.0f, B / 255.0f); } /// /// Converts the color into a three component color. /// /// A three component color containing the red, green, and blue components of the color. public Color3 ToColor3() { return new Color3(R / 255.0f, G / 255.0f, B / 255.0f); } /// /// Converts the color into a four component vector. /// /// A four component vector containing all four color components. public Vector4 ToVector4() { return new Vector4(R / 255.0f, G / 255.0f, B / 255.0f, A / 255.0f); } /// /// Creates an array containing the elements of the color. /// /// A four-element array containing the components of the color in RGBA order. public byte[] ToArray() { return new[] { R, G, B, A }; } /// /// Gets the brightness. /// /// The Hue-Saturation-Brightness (HSB) saturation for this public float GetBrightness() { float r = R / 255.0f; float g = G / 255.0f; float b = B / 255.0f; float max, min; max = r; min = r; if (g > max) max = g; if (b > max) max = b; if (g < min) min = g; if (b < min) min = b; return (max + min) / 2; } /// /// Gets the hue. /// /// The Hue-Saturation-Brightness (HSB) saturation for this public float GetHue() { if (R == G && G == B) return 0; // 0 makes as good an UNDEFINED value as any float r = R / 255.0f; float g = G / 255.0f; float b = B / 255.0f; float max, min; float delta; float hue = 0.0f; max = r; min = r; if (g > max) max = g; if (b > max) max = b; if (g < min) min = g; if (b < min) min = b; delta = max - min; if (r == max) { hue = (g - b) / delta; } else if (g == max) { hue = 2 + (b - r) / delta; } else if (b == max) { hue = 4 + (r - g) / delta; } hue *= 60; if (hue < 0.0f) { hue += 360.0f; } return hue; } /// /// Gets the saturation. /// /// The Hue-Saturation-Brightness (HSB) saturation for this public float GetSaturation() { float r = R / 255.0f; float g = G / 255.0f; float b = B / 255.0f; float max, min; float l, s = 0; max = r; min = r; if (g > max) max = g; if (b > max) max = b; if (g < min) min = g; if (b < min) min = b; // if max == min, then there is no color and // the saturation is zero. if (max != min) { l = (max + min) / 2; if (l <= .5) { s = (max - min) / (max + min); } else { s = (max - min) / (2 - max - min); } } return s; } /// /// Adds two colors. /// /// The first color to add. /// The second color to add. /// When the method completes, completes the sum of the two colors. public static void Add(ref Color left, ref Color right, out Color result) { result.A = (byte)(left.A + right.A); result.R = (byte)(left.R + right.R); result.G = (byte)(left.G + right.G); result.B = (byte)(left.B + right.B); } /// /// Adds two colors. /// /// The first color to add. /// The second color to add. /// The sum of the two colors. public static Color Add(Color left, Color right) { return new Color((byte)(left.R + right.R), (byte)(left.G + right.G), (byte)(left.B + right.B), (byte)(left.A + right.A)); } /// /// Subtracts two colors. /// /// The first color to subtract. /// The second color to subtract. /// WHen the method completes, contains the difference of the two colors. public static void Subtract(ref Color left, ref Color right, out Color result) { result.A = (byte)(left.A - right.A); result.R = (byte)(left.R - right.R); result.G = (byte)(left.G - right.G); result.B = (byte)(left.B - right.B); } /// /// Subtracts two colors. /// /// The first color to subtract. /// The second color to subtract /// The difference of the two colors. public static Color Subtract(Color left, Color right) { return new Color((byte)(left.R - right.R), (byte)(left.G - right.G), (byte)(left.B - right.B), (byte)(left.A - right.A)); } /// /// Modulates two colors. /// /// The first color to modulate. /// The second color to modulate. /// When the method completes, contains the modulated color. public static void Modulate(ref Color left, ref Color right, out Color result) { result.A = (byte)(left.A * right.A / 255); result.R = (byte)(left.R * right.R / 255); result.G = (byte)(left.G * right.G / 255); result.B = (byte)(left.B * right.B / 255); } /// /// Modulates two colors. /// /// The first color to modulate. /// The second color to modulate. /// The modulated color. public static Color Modulate(Color left, Color right) { return new Color((byte)(left.R * right.R / 255), (byte)(left.G * right.G / 255), (byte)(left.B * right.B / 255), (byte)(left.A * right.A / 255)); } /// /// Scales a color. /// /// The color to scale. /// The amount by which to scale. /// When the method completes, contains the scaled color. public static void Scale(ref Color value, float scale, out Color result) { result.A = (byte)(value.A * scale); result.R = (byte)(value.R * scale); result.G = (byte)(value.G * scale); result.B = (byte)(value.B * scale); } /// /// Scales a color. /// /// The color to scale. /// The amount by which to scale. /// The scaled color. public static Color Scale(Color value, float scale) { return new Color((byte)(value.R * scale), (byte)(value.G * scale), (byte)(value.B * scale), (byte)(value.A * scale)); } /// /// Negates a color. /// /// The color to negate. /// When the method completes, contains the negated color. public static void Negate(ref Color value, out Color result) { result.A = (byte)(255 - value.A); result.R = (byte)(255 - value.R); result.G = (byte)(255 - value.G); result.B = (byte)(255 - value.B); } /// /// Negates a color. /// /// The color to negate. /// The negated color. public static Color Negate(Color value) { return new Color((byte)(255 - value.R), (byte)(255 - value.G), (byte)(255 - value.B), (byte)(255 - value.A)); } /// /// Restricts a value to be within a specified range. /// /// The value to clamp. /// The minimum value. /// The maximum value. /// When the method completes, contains the clamped value. public static void Clamp(ref Color value, ref Color min, ref Color max, out Color result) { byte alpha = value.A; alpha = (alpha > max.A) ? max.A : alpha; alpha = (alpha < min.A) ? min.A : alpha; byte red = value.R; red = (red > max.R) ? max.R : red; red = (red < min.R) ? min.R : red; byte green = value.G; green = (green > max.G) ? max.G : green; green = (green < min.G) ? min.G : green; byte blue = value.B; blue = (blue > max.B) ? max.B : blue; blue = (blue < min.B) ? min.B : blue; result = new Color(red, green, blue, alpha); } /// /// Converts the color from a packed BGRA integer. /// /// A packed integer containing all four color components in BGRA order /// A color. public static Color FromBgra(int color) { return new Color((byte)((color >> 16) & 255), (byte)((color >> 8) & 255), (byte)(color & 255), (byte)((color >> 24) & 255)); } /// /// Converts the color from a packed BGRA integer. /// /// A packed integer containing all four color components in BGRA order /// A color. public static Color FromBgra(uint color) { return FromBgra(unchecked((int)color)); } /// /// Converts the color from a packed ABGR integer. /// /// A packed integer containing all four color components in ABGR order /// A color. public static Color FromAbgr(int color) { return new Color((byte)(color >> 24), (byte)(color >> 16), (byte)(color >> 8), (byte)color); } /// /// Converts the color from a packed ABGR integer. /// /// A packed integer containing all four color components in ABGR order /// A color. public static Color FromAbgr(uint color) { return FromAbgr(unchecked((int)color)); } /// /// Converts the color from a packed RGBA integer. /// /// A packed integer containing all four color components in RGBA order /// A color. public static Color FromRgba(int color) { return new Color(color); } /// /// Converts the color from a packed RGBA integer. /// /// A packed integer containing all four color components in RGBA order /// A color. public static Color FromRgba(uint color) { return new Color(color); } /// /// Restricts a value to be within a specified range. /// /// The value to clamp. /// The minimum value. /// The maximum value. /// The clamped value. public static Color Clamp(Color value, Color min, Color max) { Color result; Clamp(ref value, ref min, ref max, out result); return result; } /// /// Performs a linear interpolation between two colors. /// /// Start color. /// End color. /// Value between 0 and 1 indicating the weight of . /// When the method completes, contains the linear interpolation of the two colors. /// /// Passing a value of 0 will cause to be returned; a value of 1 will cause to be returned. /// public static void Lerp(ref Color start, ref Color end, float amount, out Color result) { result.R = MathUtil.Lerp(start.R, end.R, amount); result.G = MathUtil.Lerp(start.G, end.G, amount); result.B = MathUtil.Lerp(start.B, end.B, amount); result.A = MathUtil.Lerp(start.A, end.A, amount); } /// /// Performs a linear interpolation between two colors. /// /// Start color. /// End color. /// Value between 0 and 1 indicating the weight of . /// The linear interpolation of the two colors. /// /// Passing a value of 0 will cause to be returned; a value of 1 will cause to be returned. /// public static Color Lerp(Color start, Color end, float amount) { Color result; Lerp(ref start, ref end, amount, out result); return result; } /// /// Performs a cubic interpolation between two colors. /// /// Start color. /// End color. /// Value between 0 and 1 indicating the weight of . /// When the method completes, contains the cubic interpolation of the two colors. public static void SmoothStep(ref Color start, ref Color end, float amount, out Color result) { amount = MathUtil.SmoothStep(amount); Lerp(ref start, ref end, amount, out result); } /// /// Performs a cubic interpolation between two colors. /// /// Start color. /// End color. /// Value between 0 and 1 indicating the weight of . /// The cubic interpolation of the two colors. public static Color SmoothStep(Color start, Color end, float amount) { Color result; SmoothStep(ref start, ref end, amount, out result); return result; } /// /// Returns a color containing the smallest components of the specified colors. /// /// The first source color. /// The second source color. /// When the method completes, contains an new color composed of the largest components of the source colors. public static void Max(ref Color left, ref Color right, out Color result) { result.A = (left.A > right.A) ? left.A : right.A; result.R = (left.R > right.R) ? left.R : right.R; result.G = (left.G > right.G) ? left.G : right.G; result.B = (left.B > right.B) ? left.B : right.B; } /// /// Returns a color containing the largest components of the specified colorss. /// /// The first source color. /// The second source color. /// A color containing the largest components of the source colors. public static Color Max(Color left, Color right) { Color result; Max(ref left, ref right, out result); return result; } /// /// Returns a color containing the smallest components of the specified colors. /// /// The first source color. /// The second source color. /// When the method completes, contains an new color composed of the smallest components of the source colors. public static void Min(ref Color left, ref Color right, out Color result) { result.A = (left.A < right.A) ? left.A : right.A; result.R = (left.R < right.R) ? left.R : right.R; result.G = (left.G < right.G) ? left.G : right.G; result.B = (left.B < right.B) ? left.B : right.B; } /// /// Returns a color containing the smallest components of the specified colors. /// /// The first source color. /// The second source color. /// A color containing the smallest components of the source colors. public static Color Min(Color left, Color right) { Color result; Min(ref left, ref right, out result); return result; } /// /// Adjusts the contrast of a color. /// /// The color whose contrast is to be adjusted. /// The amount by which to adjust the contrast. /// When the method completes, contains the adjusted color. public static void AdjustContrast(ref Color value, float contrast, out Color result) { result.A = value.A; result.R = ToByte(0.5f + contrast * (value.R / 255.0f - 0.5f)); result.G = ToByte(0.5f + contrast * (value.G / 255.0f - 0.5f)); result.B = ToByte(0.5f + contrast * (value.B / 255.0f - 0.5f)); } /// /// Adjusts the contrast of a color. /// /// The color whose contrast is to be adjusted. /// The amount by which to adjust the contrast. /// The adjusted color. public static Color AdjustContrast(Color value, float contrast) { return new Color( ToByte(0.5f + contrast * (value.R / 255.0f - 0.5f)), ToByte(0.5f + contrast * (value.G / 255.0f - 0.5f)), ToByte(0.5f + contrast * (value.B / 255.0f - 0.5f)), value.A); } /// /// Adjusts the saturation of a color. /// /// The color whose saturation is to be adjusted. /// The amount by which to adjust the saturation. /// When the method completes, contains the adjusted color. public static void AdjustSaturation(ref Color value, float saturation, out Color result) { float grey = value.R / 255.0f * 0.2125f + value.G / 255.0f * 0.7154f + value.B / 255.0f * 0.0721f; result.A = value.A; result.R = ToByte(grey + saturation * (value.R / 255.0f - grey)); result.G = ToByte(grey + saturation * (value.G / 255.0f - grey)); result.B = ToByte(grey + saturation * (value.B / 255.0f - grey)); } /// /// Adjusts the saturation of a color. /// /// The color whose saturation is to be adjusted. /// The amount by which to adjust the saturation. /// The adjusted color. public static Color AdjustSaturation(Color value, float saturation) { float grey = value.R / 255.0f * 0.2125f + value.G / 255.0f * 0.7154f + value.B / 255.0f * 0.0721f; return new Color( ToByte(grey + saturation * (value.R / 255.0f - grey)), ToByte(grey + saturation * (value.G / 255.0f - grey)), ToByte(grey + saturation * (value.B / 255.0f - grey)), value.A); } /// /// Adds two colors. /// /// The first color to add. /// The second color to add. /// The sum of the two colors. public static Color operator +(Color left, Color right) { return new Color((byte)(left.R + right.R), (byte)(left.G + right.G), (byte)(left.B + right.B), (byte)(left.A + right.A)); } /// /// Assert a color (return it unchanged). /// /// The color to assert (unchanged). /// The asserted (unchanged) color. public static Color operator +(Color value) { return value; } /// /// Subtracts two colors. /// /// The first color to subtract. /// The second color to subtract. /// The difference of the two colors. public static Color operator -(Color left, Color right) { return new Color((byte)(left.R - right.R), (byte)(left.G - right.G), (byte)(left.B - right.B), (byte)(left.A - right.A)); } /// /// Negates a color. /// /// The color to negate. /// A negated color. public static Color operator -(Color value) { return new Color(-value.R, -value.G, -value.B, -value.A); } /// /// Scales a color. /// /// The factor by which to scale the color. /// The color to scale. /// The scaled color. public static Color operator *(float scale, Color value) { return new Color((byte)(value.R * scale), (byte)(value.G * scale), (byte)(value.B * scale), (byte)(value.A * scale)); } /// /// Scales a color. /// /// The factor by which to scale the color. /// The color to scale. /// The scaled color. public static Color operator *(Color value, float scale) { return new Color((byte)(value.R * scale), (byte)(value.G * scale), (byte)(value.B * scale), (byte)(value.A * scale)); } /// /// Modulates two colors. /// /// The first color to modulate. /// The second color to modulate. /// The modulated color. public static Color operator *(Color left, Color right) { return new Color((byte)(left.R * right.R / 255.0f), (byte)(left.G * right.G / 255.0f), (byte)(left.B * right.B / 255.0f), (byte)(left.A * right.A / 255.0f)); } /// /// Tests for equality between two objects. /// /// The first value to compare. /// The second value to compare. /// true if has the same value as ; otherwise, false. public static bool operator ==(Color left, Color right) { return left.Equals(right); } /// /// Tests for inequality between two objects. /// /// The first value to compare. /// The second value to compare. /// true if has a different value than ; otherwise, false. public static bool operator !=(Color left, Color right) { return !left.Equals(right); } /// /// Performs an explicit conversion from to . /// /// The value. /// The result of the conversion. public static explicit operator Color3(Color value) { return value.ToColor3(); } /// /// Performs an explicit conversion from to . /// /// The value. /// The result of the conversion. public static explicit operator Vector3(Color value) { return new Vector3(value.R / 255.0f, value.G / 255.0f, value.B / 255.0f); } /// /// Performs an explicit conversion from to . /// /// The value. /// The result of the conversion. public static explicit operator Vector4(Color value) { return new Vector4(value.R / 255.0f, value.G / 255.0f, value.B / 255.0f, value.A / 255.0f); } /// /// Convert this instance to a /// /// The result of the conversion. public Color4 ToColor4() { return new Color4(R / 255.0f, G / 255.0f, B / 255.0f, A / 255.0f); } /// /// Performs an implicit conversion from to . /// /// The value. /// The result of the conversion. public static implicit operator Color4(Color value) { return value.ToColor4(); } /// /// Performs an explicit conversion from to . /// /// The value. /// The result of the conversion. public static explicit operator Color(Vector3 value) { return new Color(value.X, value.Y, value.Z, 1.0f); } /// /// Performs an explicit conversion from to . /// /// The value. /// The result of the conversion. public static explicit operator Color(Color3 value) { return new Color(value.R, value.G, value.B, 1.0f); } /// /// Performs an explicit conversion from to . /// /// The value. /// The result of the conversion. public static explicit operator Color(Vector4 value) { return new Color(value.X, value.Y, value.Z, value.W); } /// /// Performs an explicit conversion from to . /// /// The value. /// The result of the conversion. public static explicit operator Color(Color4 value) { return new Color(value.R, value.G, value.B, value.A); } /// /// Performs an explicit conversion from to . /// /// The value. /// /// The result of the conversion. /// public static explicit operator int(Color value) { return value.ToRgba(); } /// /// Performs an explicit conversion from to . /// /// The value. /// /// The result of the conversion. /// public static explicit operator Color(int value) { return new Color(value); } /// /// Returns a that represents this instance. /// /// /// A that represents this instance. /// public override string ToString() { return ColorExtensions.RgbaToString(ToRgba()); } /// /// Returns a hash code for this instance. /// /// /// A hash code for this instance, suitable for use in hashing algorithms and data structures like a hash table. /// public override int GetHashCode() { return A.GetHashCode() + R.GetHashCode() + G.GetHashCode() + B.GetHashCode(); } /// /// Determines whether the specified is equal to this instance. /// /// The to compare with this instance. /// /// true if the specified is equal to this instance; otherwise, false. /// public bool Equals(Color other) { return R == other.R && G == other.G && B == other.B && A == other.A; } /// /// Determines whether the specified is equal to this instance. /// /// The to compare with this instance. /// /// true if the specified is equal to this instance; otherwise, false. /// public override bool Equals(object value) { if (value == null) return false; if (!ReferenceEquals(value.GetType(), typeof(Color))) return false; return Equals((Color)value); } private static byte ToByte(float component) { var value = (int)(component * 255.0f); return (byte)(value < 0 ? 0 : value > 255 ? 255 : value); } } }