// Copyright (c) Xenko contributors (https://xenko.com) and Silicon Studio Corp. (https://www.siliconstudio.co.jp) // Distributed under the MIT license. See the LICENSE.md file in the project root for more information. // // ----------------------------------------------------------------------------- // Original code from SlimMath project. http://code.google.com/p/slimmath/ // Greetings to SlimDX Group. Original code published with the following license: // ----------------------------------------------------------------------------- /* * Copyright (c) 2007-2011 SlimDX Group * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ using System; using System.Globalization; using System.Runtime.InteropServices; using System.Runtime.Serialization; namespace math { /// /// Represents a plane in three dimensional space. /// [DataContract] [StructLayout(LayoutKind.Sequential, Pack = 4)] public struct Plane : IEquatable, IFormattable { /// /// The normal vector of the plane. /// public Vec3 Normal; /// /// The distance of the plane along its normal from the origin. /// public float D; /// /// Initializes a new instance of the struct. /// /// The value that will be assigned to all components. public Plane(float value) { Normal.X = Normal.Y = Normal.Z = D = value; } /// /// Initializes a new instance of the struct. /// /// The X component of the normal. /// The Y component of the normal. /// The Z component of the normal. /// The distance of the plane along its normal from the origin. public Plane(float a, float b, float c, float d) { Normal.X = a; Normal.Y = b; Normal.Z = c; D = d; } /// /// Initializes a new instance of the struct. /// /// Any point that lies along the plane. /// The normal vector to the plane. public Plane(Vec3 point, Vec3 normal) { this.Normal = normal; this.D = Vec3.Dot(normal, point); } /// /// Initializes a new instance of the struct. /// /// The normal of the plane. /// The distance of the plane along its normal from the origin public Plane(Vec3 value, float d) { Normal = value; D = d; } /// /// Initializes a new instance of the struct. /// /// First point of a triangle defining the plane. /// Second point of a triangle defining the plane. /// Third point of a triangle defining the plane. public Plane(Vec3 point1, Vec3 point2, Vec3 point3) { float x1 = point2.X - point1.X; float y1 = point2.Y - point1.Y; float z1 = point2.Z - point1.Z; float x2 = point3.X - point1.X; float y2 = point3.Y - point1.Y; float z2 = point3.Z - point1.Z; float yz = (y1 * z2) - (z1 * y2); float xz = (z1 * x2) - (x1 * z2); float xy = (x1 * y2) - (y1 * x2); float invPyth = 1.0f / (float)(Math.Sqrt((yz * yz) + (xz * xz) + (xy * xy))); Normal.X = yz * invPyth; Normal.Y = xz * invPyth; Normal.Z = xy * invPyth; D = -((Normal.X * point1.X) + (Normal.Y * point1.Y) + (Normal.Z * point1.Z)); } /// /// Initializes a new instance of the struct. /// /// The values to assign to the A, B, C, and D components of the plane. This must be an array with four elements. /// Thrown when is null. /// Thrown when contains more or less than four elements. public Plane(float[] values) { if (values == null) throw new ArgumentNullException("values"); if (values.Length != 4) throw new ArgumentOutOfRangeException("values", "There must be four and only four input values for Plane."); Normal.X = values[0]; Normal.Y = values[1]; Normal.Z = values[2]; D = values[3]; } /// /// Gets or sets the component at the specified index. /// /// The value of the A, B, C, or D component, depending on the index. /// The index of the component to access. Use 0 for the A component, 1 for the B component, 2 for the C component, and 3 for the D component. /// The value of the component at the specified index. /// Thrown when the is out of the range [0, 3]. public float this[int index] { get { switch (index) { case 0: return Normal.X; case 1: return Normal.Y; case 2: return Normal.Z; case 3: return D; } throw new ArgumentOutOfRangeException("index", "Indices for Plane run from 0 to 3, inclusive."); } set { switch (index) { case 0: Normal.X = value; break; case 1: Normal.Y = value; break; case 2: Normal.Z = value; break; case 3: D = value; break; default: throw new ArgumentOutOfRangeException("index", "Indices for Plane run from 0 to 3, inclusive."); } } } /// /// Negates a plane by negating all its coefficients, which result in a plane in opposite direction. /// public void Negate() { Normal.X = -Normal.X; Normal.Y = -Normal.Y; Normal.Z = -Normal.Z; D = -D; } /// /// Changes the coefficients of the normal vector of the plane to make it of unit length. /// public void Normalize() { float magnitude = 1.0f / (float)(Math.Sqrt((Normal.X * Normal.X) + (Normal.Y * Normal.Y) + (Normal.Z * Normal.Z))); Normal.X *= magnitude; Normal.Y *= magnitude; Normal.Z *= magnitude; D *= magnitude; } /// /// Creates an array containing the elements of the plane. /// /// A four-element array containing the components of the plane. public float[] ToArray() { return new float[] { Normal.X, Normal.Y, Normal.Z, D }; } /// /// Determines if there is an intersection between the current object and a point. /// /// The point to test. /// Whether the two objects intersected. public PlaneIntersectionType Intersects(ref Vec3 point) { return CollisionHelper.PlaneIntersectsPoint(ref this, ref point); } /// /// Determines if there is an intersection between the current object and a . /// /// The ray to test. /// Whether the two objects intersected. public bool Intersects(ref Ray ray) { float distance; return CollisionHelper.RayIntersectsPlane(ref ray, ref this, out distance); } /// /// Determines if there is an intersection between the current object and a . /// /// The ray to test. /// When the method completes, contains the distance of the intersection, /// or 0 if there was no intersection. /// Whether the two objects intersected. public bool Intersects(ref Ray ray, out float distance) { return CollisionHelper.RayIntersectsPlane(ref ray, ref this, out distance); } /// /// Determines if there is an intersection between the current object and a . /// /// The ray to test. /// When the method completes, contains the point of intersection, /// or if there was no intersection. /// Whether the two objects intersected. public bool Intersects(ref Ray ray, out Vec3 point) { return CollisionHelper.RayIntersectsPlane(ref ray, ref this, out point); } /// /// Determines if there is an intersection between the current object and a . /// /// The plane to test. /// Whether the two objects intersected. public bool Intersects(ref Plane plane) { return CollisionHelper.PlaneIntersectsPlane(ref this, ref plane); } /// /// Determines if there is an intersection between the current object and a . /// /// The plane to test. /// When the method completes, contains the line of intersection /// as a , or a zero ray if there was no intersection. /// Whether the two objects intersected. public bool Intersects(ref Plane plane, out Ray line) { return CollisionHelper.PlaneIntersectsPlane(ref this, ref plane, out line); } /// /// Determines if there is an intersection between the current object and a triangle. /// /// The first vertex of the triangle to test. /// The second vertex of the triagnle to test. /// The third vertex of the triangle to test. /// Whether the two objects intersected. public PlaneIntersectionType Intersects(ref Vec3 vertex1, ref Vec3 vertex2, ref Vec3 vertex3) { return CollisionHelper.PlaneIntersectsTriangle(ref this, ref vertex1, ref vertex2, ref vertex3); } /// /// Determines if there is an intersection between the current object and a . /// /// The box to test. /// Whether the two objects intersected. public PlaneIntersectionType Intersects(ref BoundingBox box) { return CollisionHelper.PlaneIntersectsBox(ref this, ref box); } /// /// Determines if there is an intersection between the current object and a . /// /// The sphere to test. /// Whether the two objects intersected. public PlaneIntersectionType Intersects(ref BoundingSphere sphere) { return CollisionHelper.PlaneIntersectsSphere(ref this, ref sphere); } /// /// Scales the plane by the given scaling factor. /// /// The plane to scale. /// The amount by which to scale the plane. /// When the method completes, contains the scaled plane. public static void Multiply(ref Plane value, float scale, out Plane result) { result.Normal.X = value.Normal.X * scale; result.Normal.Y = value.Normal.Y * scale; result.Normal.Z = value.Normal.Z * scale; result.D = value.D * scale; } /// /// Scales the plane by the given scaling factor. /// /// The plane to scale. /// The amount by which to scale the plane. /// The scaled plane. public static Plane Multiply(Plane value, float scale) { return new Plane(value.Normal.X * scale, value.Normal.Y * scale, value.Normal.Z * scale, value.D * scale); } /// /// Calculates the dot product of the specified vector and plane. /// /// The source plane. /// The source vector. /// When the method completes, contains the dot product of the specified plane and vector. public static void Dot(ref Plane left, ref Vec4 right, out float result) { result = (left.Normal.X * right.X) + (left.Normal.Y * right.Y) + (left.Normal.Z * right.Z) + (left.D * right.W); } /// /// Calculates the dot product of the specified vector and plane. /// /// The source plane. /// The source vector. /// The dot product of the specified plane and vector. public static float Dot(Plane left, Vec4 right) { return (left.Normal.X * right.X) + (left.Normal.Y * right.Y) + (left.Normal.Z * right.Z) + (left.D * right.W); } /// /// Calculates the dot product of a specified vector and the normal of the plane plus the distance value of the plane. /// /// The source plane. /// The source vector. /// When the method completes, contains the dot product of a specified vector and the normal of the Plane plus the distance value of the plane. public static void DotCoordinate(ref Plane left, ref Vec3 right, out float result) { result = (left.Normal.X * right.X) + (left.Normal.Y * right.Y) + (left.Normal.Z * right.Z) + left.D; } /// /// Calculates the dot product of a specified vector and the normal of the plane plus the distance value of the plane. /// /// The source plane. /// The source vector. /// The dot product of a specified vector and the normal of the Plane plus the distance value of the plane. public static float DotCoordinate(Plane left, Vec3 right) { return (left.Normal.X * right.X) + (left.Normal.Y * right.Y) + (left.Normal.Z * right.Z) + left.D; } /// /// Calculates the dot product of the specified vector and the normal of the plane. /// /// The source plane. /// The source vector. /// When the method completes, contains the dot product of the specified vector and the normal of the plane. public static void DotNormal(ref Plane left, ref Vec3 right, out float result) { result = (left.Normal.X * right.X) + (left.Normal.Y * right.Y) + (left.Normal.Z * right.Z); } /// /// Calculates the dot product of the specified vector and the normal of the plane. /// /// The source plane. /// The source vector. /// The dot product of the specified vector and the normal of the plane. public static float DotNormal(Plane left, Vec3 right) { return (left.Normal.X * right.X) + (left.Normal.Y * right.Y) + (left.Normal.Z * right.Z); } /// /// Projects a point onto a plane. /// /// The plane to project the point to. /// The point to project. /// The projected point. public static void Project(ref Plane plane, ref Vec3 point, out Vec3 result) { float distance; DotCoordinate(ref plane, ref point, out distance); // compute: point - distance * plane.Normal Vec3.Multiply(ref plane.Normal, distance, out result); Vec3.Subtract(ref point, ref result, out result); } /// /// Projects a point onto a plane. /// /// The plane to project the point to. /// The point to project. /// The projected point. public static Vec3 Project(Plane plane, Vec3 point) { Vec3 result; Project(ref plane, ref point, out result); return result; } /// /// Changes the coefficients of the normal vector of the plane to make it of unit length. /// /// The source plane. /// When the method completes, contains the normalized plane. public static void Normalize(ref Plane plane, out Plane result) { float magnitude = 1.0f / (float)(Math.Sqrt((plane.Normal.X * plane.Normal.X) + (plane.Normal.Y * plane.Normal.Y) + (plane.Normal.Z * plane.Normal.Z))); result.Normal.X = plane.Normal.X * magnitude; result.Normal.Y = plane.Normal.Y * magnitude; result.Normal.Z = plane.Normal.Z * magnitude; result.D = plane.D * magnitude; } /// /// Changes the coefficients of the normal vector of the plane to make it of unit length. /// /// The source plane. /// The normalized plane. public static Plane Normalize(Plane plane) { float magnitude = 1.0f / (float)(Math.Sqrt((plane.Normal.X * plane.Normal.X) + (plane.Normal.Y * plane.Normal.Y) + (plane.Normal.Z * plane.Normal.Z))); return new Plane(plane.Normal.X * magnitude, plane.Normal.Y * magnitude, plane.Normal.Z * magnitude, plane.D * magnitude); } /// /// Negates a plane by negating all its coefficients, which result in a plane in opposite direction. /// /// The source plane. /// When the method completes, contains the flipped plane. public static void Negate(ref Plane plane, out Plane result) { result.Normal.X = -plane.Normal.X; result.Normal.Y = -plane.Normal.Y; result.Normal.Z = -plane.Normal.Z; result.D = -plane.D; } /// /// Negates a plane by negating all its coefficients, which result in a plane in opposite direction. /// /// The source plane. /// The flipped plane. public static Plane Negate(Plane plane) { float magnitude = 1.0f / (float)(Math.Sqrt((plane.Normal.X * plane.Normal.X) + (plane.Normal.Y * plane.Normal.Y) + (plane.Normal.Z * plane.Normal.Z))); return new Plane(plane.Normal.X * magnitude, plane.Normal.Y * magnitude, plane.Normal.Z * magnitude, plane.D * magnitude); } /// /// Transforms a normalized plane by a quaternion rotation. /// /// The normalized source plane. /// The quaternion rotation. /// When the method completes, contains the transformed plane. public static void Transform(ref Plane plane, ref Quaternion rotation, out Plane result) { float x2 = rotation.X + rotation.X; float y2 = rotation.Y + rotation.Y; float z2 = rotation.Z + rotation.Z; float wx = rotation.W * x2; float wy = rotation.W * y2; float wz = rotation.W * z2; float xx = rotation.X * x2; float xy = rotation.X * y2; float xz = rotation.X * z2; float yy = rotation.Y * y2; float yz = rotation.Y * z2; float zz = rotation.Z * z2; float x = plane.Normal.X; float y = plane.Normal.Y; float z = plane.Normal.Z; result.Normal.X = ((x * ((1.0f - yy) - zz)) + (y * (xy - wz))) + (z * (xz + wy)); result.Normal.Y = ((x * (xy + wz)) + (y * ((1.0f - xx) - zz))) + (z * (yz - wx)); result.Normal.Z = ((x * (xz - wy)) + (y * (yz + wx))) + (z * ((1.0f - xx) - yy)); result.D = plane.D; } /// /// Transforms a normalized plane by a quaternion rotation. /// /// The normalized source plane. /// The quaternion rotation. /// The transformed plane. public static Plane Transform(Plane plane, Quaternion rotation) { Plane result; float x2 = rotation.X + rotation.X; float y2 = rotation.Y + rotation.Y; float z2 = rotation.Z + rotation.Z; float wx = rotation.W * x2; float wy = rotation.W * y2; float wz = rotation.W * z2; float xx = rotation.X * x2; float xy = rotation.X * y2; float xz = rotation.X * z2; float yy = rotation.Y * y2; float yz = rotation.Y * z2; float zz = rotation.Z * z2; float x = plane.Normal.X; float y = plane.Normal.Y; float z = plane.Normal.Z; result.Normal.X = ((x * ((1.0f - yy) - zz)) + (y * (xy - wz))) + (z * (xz + wy)); result.Normal.Y = ((x * (xy + wz)) + (y * ((1.0f - xx) - zz))) + (z * (yz - wx)); result.Normal.Z = ((x * (xz - wy)) + (y * (yz + wx))) + (z * ((1.0f - xx) - yy)); result.D = plane.D; return result; } /// /// Transforms an array of normalized planes by a quaternion rotation. /// /// The array of normalized planes to transform. /// The quaternion rotation. /// Thrown when is null. public static void Transform(Plane[] planes, ref Quaternion rotation) { if (planes == null) throw new ArgumentNullException("planes"); float x2 = rotation.X + rotation.X; float y2 = rotation.Y + rotation.Y; float z2 = rotation.Z + rotation.Z; float wx = rotation.W * x2; float wy = rotation.W * y2; float wz = rotation.W * z2; float xx = rotation.X * x2; float xy = rotation.X * y2; float xz = rotation.X * z2; float yy = rotation.Y * y2; float yz = rotation.Y * z2; float zz = rotation.Z * z2; for (int i = 0; i < planes.Length; ++i) { float x = planes[i].Normal.X; float y = planes[i].Normal.Y; float z = planes[i].Normal.Z; /* * Note: * Factor common arithmetic out of loop. */ planes[i].Normal.X = ((x * ((1.0f - yy) - zz)) + (y * (xy - wz))) + (z * (xz + wy)); planes[i].Normal.Y = ((x * (xy + wz)) + (y * ((1.0f - xx) - zz))) + (z * (yz - wx)); planes[i].Normal.Z = ((x * (xz - wy)) + (y * (yz + wx))) + (z * ((1.0f - xx) - yy)); } } /// /// Transforms a normalized plane by a matrix. /// /// The normalized source plane. /// The transformation matrix. /// When the method completes, contains the transformed plane. public static void Transform(ref Plane plane, ref Matrix transformation, out Plane result) { float x = plane.Normal.X; float y = plane.Normal.Y; float z = plane.Normal.Z; float d = plane.D; Matrix inverse; Matrix.Invert(ref transformation, out inverse); result.Normal.X = (((x * inverse.M11) + (y * inverse.M12)) + (z * inverse.M13)) + (d * inverse.M14); result.Normal.Y = (((x * inverse.M21) + (y * inverse.M22)) + (z * inverse.M23)) + (d * inverse.M24); result.Normal.Z = (((x * inverse.M31) + (y * inverse.M32)) + (z * inverse.M33)) + (d * inverse.M34); result.D = (((x * inverse.M41) + (y * inverse.M42)) + (z * inverse.M43)) + (d * inverse.M44); } /// /// Transforms a normalized plane by a matrix. /// /// The normalized source plane. /// The transformation matrix. /// When the method completes, contains the transformed plane. public static Plane Transform(Plane plane, Matrix transformation) { Plane result; float x = plane.Normal.X; float y = plane.Normal.Y; float z = plane.Normal.Z; float d = plane.D; transformation.Invert(); result.Normal.X = (((x * transformation.M11) + (y * transformation.M12)) + (z * transformation.M13)) + (d * transformation.M14); result.Normal.Y = (((x * transformation.M21) + (y * transformation.M22)) + (z * transformation.M23)) + (d * transformation.M24); result.Normal.Z = (((x * transformation.M31) + (y * transformation.M32)) + (z * transformation.M33)) + (d * transformation.M34); result.D = (((x * transformation.M41) + (y * transformation.M42)) + (z * transformation.M43)) + (d * transformation.M44); return result; } /// /// Transforms an array of normalized planes by a matrix. /// /// The array of normalized planes to transform. /// The transformation matrix. /// Thrown when is null. public static void Transform(Plane[] planes, ref Matrix transformation) { if (planes == null) throw new ArgumentNullException("planes"); Matrix inverse; Matrix.Invert(ref transformation, out inverse); for (int i = 0; i < planes.Length; ++i) { Transform(ref planes[i], ref transformation, out planes[i]); } } /// /// Scales a plane by the given value. /// /// The amount by which to scale the plane. /// The plane to scale. /// The scaled plane. public static Plane operator *(float scale, Plane plane) { return new Plane(plane.Normal.X * scale, plane.Normal.Y * scale, plane.Normal.Z * scale, plane.D * scale); } /// /// Scales a plane by the given value. /// /// The plane to scale. /// The amount by which to scale the plane. /// The scaled plane. public static Plane operator *(Plane plane, float scale) { return new Plane(plane.Normal.X * scale, plane.Normal.Y * scale, plane.Normal.Z * scale, plane.D * scale); } /// /// Negates a plane by negating all its coefficients, which result in a plane in opposite direction. /// /// The negated plane. public static Plane operator -(Plane plane) { return new Plane(-plane.Normal.X, -plane.Normal.Y, -plane.Normal.Z, -plane.D); } /// /// Tests for equality between two objects. /// /// The first value to compare. /// The second value to compare. /// true if has the same value as ; otherwise, false. public static bool operator ==(Plane left, Plane right) { return left.Equals(right); } /// /// Tests for inequality between two objects. /// /// The first value to compare. /// The second value to compare. /// true if has a different value than ; otherwise, false. public static bool operator !=(Plane left, Plane right) { return !left.Equals(right); } /// /// Returns a that represents this instance. /// /// /// A that represents this instance. /// public override string ToString() { return string.Format(CultureInfo.CurrentCulture, "A:{0} B:{1} C:{2} D:{3}", Normal.X, Normal.Y, Normal.Z, D); } /// /// Returns a that represents this instance. /// /// The format. /// /// A that represents this instance. /// public string ToString(string format) { return string.Format(CultureInfo.CurrentCulture, "A:{0} B:{1} C:{2} D:{3}", Normal.X.ToString(format, CultureInfo.CurrentCulture), Normal.Y.ToString(format, CultureInfo.CurrentCulture), Normal.Z.ToString(format, CultureInfo.CurrentCulture), D.ToString(format, CultureInfo.CurrentCulture)); } /// /// Returns a that represents this instance. /// /// The format provider. /// /// A that represents this instance. /// public string ToString(IFormatProvider formatProvider) { return string.Format(formatProvider, "A:{0} B:{1} C:{2} D:{3}", Normal.X, Normal.Y, Normal.Z, D); } /// /// Returns a that represents this instance. /// /// The format. /// The format provider. /// /// A that represents this instance. /// public string ToString(string format, IFormatProvider formatProvider) { return string.Format(formatProvider, "A:{0} B:{1} C:{2} D:{3}", Normal.X.ToString(format, formatProvider), Normal.Y.ToString(format, formatProvider), Normal.Z.ToString(format, formatProvider), D.ToString(format, formatProvider)); } /// /// Returns a hash code for this instance. /// /// /// A hash code for this instance, suitable for use in hashing algorithms and data structures like a hash table. /// public override int GetHashCode() { return Normal.GetHashCode() + D.GetHashCode(); } /// /// Determines whether the specified is equal to this instance. /// /// The to compare with this instance. /// /// true if the specified is equal to this instance; otherwise, false. /// public bool Equals(Plane value) { return Normal == value.Normal && D == value.D; } /// /// Determines whether the specified is equal to this instance. /// /// The to compare with this instance. /// /// true if the specified is equal to this instance; otherwise, false. /// public override bool Equals(object value) { if (value == null) return false; if (value.GetType() != GetType()) return false; return Equals((Plane)value); } #if SlimDX1xInterop /// /// Performs an implicit conversion from to . /// /// The value. /// The result of the conversion. public static implicit operator SlimDX.Plane(Plane value) { return new SlimDX.Plane(value.Normal, value.D); } /// /// Performs an implicit conversion from to . /// /// The value. /// The result of the conversion. public static implicit operator Plane(SlimDX.Plane value) { return new Plane(value.Normal, value.D); } #endif #if XnaInterop /// /// Performs an implicit conversion from to . /// /// The value. /// The result of the conversion. public static implicit operator Microsoft.Xna.Framework.Plane(Plane value) { return new Microsoft.Xna.Framework.Plane(value.Normal, value.D); } /// /// Performs an implicit conversion from to . /// /// The value. /// The result of the conversion. public static implicit operator Plane(Microsoft.Xna.Framework.Plane value) { return new Plane(value.Normal, value.D); } #endif } }