// Copyright (c) Xenko contributors (https://xenko.com) and Silicon Studio Corp. (https://www.siliconstudio.co.jp)
// Distributed under the MIT license. See the LICENSE.md file in the project root for more information.
//
// -----------------------------------------------------------------------------
// Original code from SlimMath project. http://code.google.com/p/slimmath/
// Greetings to SlimDX Group. Original code published with the following license:
// -----------------------------------------------------------------------------
/*
* Copyright (c) 2007-2011 SlimDX Group
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
using System;
using System.Runtime.CompilerServices;
using System.Runtime.Serialization;
namespace math
{
///
/// Common utility methods for math operations.
///
public static class MathUtil
{
///
/// The value for which all absolute numbers smaller than are considered equal to zero.
///
public const float ZeroTolerance = 1e-6f; // Value a 8x higher than 1.19209290E-07F
///
/// The value for which all absolute numbers smaller than are considered equal to zero.
///
public const double ZeroToleranceDouble = double.Epsilon * 8;
///
/// A value specifying the approximation of π which is 180 degrees.
///
public const float Pi = (float)Math.PI;
///
/// A value specifying the approximation of 2π which is 360 degrees.
///
public const float TwoPi = (float)( 2 * Math.PI );
///
/// A value specifying the approximation of π/2 which is 90 degrees.
///
public const float PiOverTwo = (float)( Math.PI / 2 );
///
/// A value specifying the approximation of π/4 which is 45 degrees.
///
public const float PiOverFour = (float)( Math.PI / 4 );
///
/// Checks if a and b are almost equals, taking into account the magnitude of floating point numbers (unlike method). See Remarks.
/// See remarks.
///
/// The left value to compare.
/// The right value to compare.
/// true if a almost equal to b, false otherwise
///
/// The code is using the technique described by Bruce Dawson in
/// Comparing Floating point numbers 2012 edition.
///
public static unsafe bool NearEqual( float a, float b )
{
// Check if the numbers are really close -- needed
// when comparing numbers near zero.
if( IsZero( a - b ) )
return true;
// Original from Bruce Dawson: http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
int aInt = *(int*)&a;
int bInt = *(int*)&b;
// Different signs means they do not match.
if( ( aInt < 0 ) != ( bInt < 0 ) )
return false;
// Find the difference in ULPs.
int ulp = Math.Abs( aInt - bInt );
// Choose of maxUlp = 4
// according to http://code.google.com/p/googletest/source/browse/trunk/include/gtest/internal/gtest-internal.h
const int maxUlp = 4;
return ( ulp <= maxUlp );
}
///
/// Determines whether the specified value is close to zero (0.0f).
///
/// The floating value.
/// true if the specified value is close to zero (0.0f); otherwise, false.
public static bool IsZero( float a )
{
return Math.Abs( a ) < ZeroTolerance;
}
///
/// Determines whether the specified value is close to zero (0.0f).
///
/// The floating value.
/// true if the specified value is close to zero (0.0f); otherwise, false.
public static bool IsZero( double a )
{
return Math.Abs( a ) < ZeroToleranceDouble;
}
///
/// Determines whether the specified value is close to one (1.0f).
///
/// The floating value.
/// true if the specified value is close to one (1.0f); otherwise, false.
public static bool IsOne( float a )
{
return IsZero( a - 1.0f );
}
///
/// Checks if a - b are almost equals within a float epsilon.
///
/// The left value to compare.
/// The right value to compare.
/// Epsilon value
/// true if a almost equal to b within a float epsilon, false otherwise
public static bool WithinEpsilon( float a, float b, float epsilon )
{
float num = a - b;
return ( ( -epsilon <= num ) && ( num <= epsilon ) );
}
///
/// Creates a one-dimensional array of the specified and filled with the specified .
///
/// The Type of the array to create.
/// The value to fill the array with.
/// The size of the array to create.
/// A new one-dimensional array of the specified type with the specified length and filled with the specified value.
public static T[] Array( T value, int length )
{
var result = new T[length];
for( var i = 0; i < length; i++ )
result[i] = value;
return result;
}
///
/// Converts revolutions to degrees.
///
/// The value to convert.
/// The converted value.
public static float RevolutionsToDegrees( float revolution )
{
return revolution * 360.0f;
}
///
/// Converts revolutions to radians.
///
/// The value to convert.
/// The converted value.
public static float RevolutionsToRadians( float revolution )
{
return revolution * TwoPi;
}
///
/// Converts revolutions to gradians.
///
/// The value to convert.
/// The converted value.
public static float RevolutionsToGradians( float revolution )
{
return revolution * 400.0f;
}
///
/// Converts degrees to revolutions.
///
/// The value to convert.
/// The converted value.
public static float DegreesToRevolutions( float degree )
{
return degree / 360.0f;
}
///
/// Converts degrees to radians.
///
/// The value to convert.
/// The converted value.
public static float DegreesToRadians( float degree )
{
return degree * ( Pi / 180.0f );
}
///
/// Converts radians to revolutions.
///
/// The value to convert.
/// The converted value.
public static float RadiansToRevolutions( float radian )
{
return radian / TwoPi;
}
///
/// Converts radians to gradians.
///
/// The value to convert.
/// The converted value.
public static float RadiansToGradians( float radian )
{
return radian * ( 200.0f / Pi );
}
///
/// Converts gradians to revolutions.
///
/// The value to convert.
/// The converted value.
public static float GradiansToRevolutions( float gradian )
{
return gradian / 400.0f;
}
///
/// Converts gradians to degrees.
///
/// The value to convert.
/// The converted value.
public static float GradiansToDegrees( float gradian )
{
return gradian * ( 9.0f / 10.0f );
}
///
/// Converts gradians to radians.
///
/// The value to convert.
/// The converted value.
public static float GradiansToRadians( float gradian )
{
return gradian * ( Pi / 200.0f );
}
///
/// Converts radians to degrees.
///
/// The value to convert.
/// The converted value.
public static float RadiansToDegrees( float radian )
{
return radian * ( 180.0f / Pi );
}
///
/// Clamps the specified value.
///
/// The value.
/// The min.
/// The max.
/// The result of clamping a value between min and max
public static float Clamp( float value, float min, float max )
{
return value < min ? min : value > max ? max : value;
}
///
/// Clamps the specified value.
///
/// The value.
/// The min.
/// The max.
/// The result of clamping a value between min and max
public static double Clamp( double value, double min, double max )
{
return value < min ? min : value > max ? max : value;
}
///
/// Clamps the specified value.
///
/// The value.
/// The min.
/// The max.
/// The result of clamping a value between min and max
public static int Clamp( int value, int min, int max )
{
return value < min ? min : value > max ? max : value;
}
///
/// Inverse-interpolates a value linearly.
///
/// Minimum value that takes place in inverse-interpolation.
/// Maximum value that takes place in inverse-interpolation.
/// Value to get inverse interpolation.
/// Returns an inverse-linearly interpolated coeficient.
public static float InverseLerp( float min, float max, float value )
{
if( IsZero( Math.Abs( max - min ) ) )
return float.NaN;
return ( value - min ) / ( max - min );
}
///
/// Inverse-interpolates a value linearly.
///
/// Minimum value that takes place in inverse-interpolation.
/// Maximum value that takes place in inverse-interpolation.
/// Value to get inverse interpolation.
/// Returns an inverse-linearly interpolated coeficient.
public static double InverseLerp( double min, double max, double value )
{
if( IsZero( Math.Abs( max - min ) ) )
return double.NaN;
return ( value - min ) / ( max - min );
}
///
/// Interpolates between two values using a linear function by a given amount.
///
///
/// See http://www.encyclopediaofmath.org/index.php/Linear_interpolation and
/// http://fgiesen.wordpress.com/2012/08/15/linear-interpolation-past-present-and-future/
///
/// Value to interpolate from.
/// Value to interpolate to.
/// Interpolation amount.
/// The result of linear interpolation of values based on the amount.
public static double Lerp( double from, double to, double amount )
{
return ( 1 - amount ) * from + amount * to;
}
///
/// Interpolates between two values using a linear function by a given amount.
///
///
/// See http://www.encyclopediaofmath.org/index.php/Linear_interpolation and
/// http://fgiesen.wordpress.com/2012/08/15/linear-interpolation-past-present-and-future/
///
/// Value to interpolate from.
/// Value to interpolate to.
/// Interpolation amount.
/// The result of linear interpolation of values based on the amount.
public static float Lerp( float from, float to, float amount )
{
return ( 1 - amount ) * from + amount * to;
}
///
/// Interpolates between two values using a linear function by a given amount.
///
///
/// See http://www.encyclopediaofmath.org/index.php/Linear_interpolation and
/// http://fgiesen.wordpress.com/2012/08/15/linear-interpolation-past-present-and-future/
///
/// Value to interpolate from.
/// Value to interpolate to.
/// Interpolation amount.
/// The result of linear interpolation of values based on the amount.
public static byte Lerp( byte from, byte to, float amount )
{
return (byte)Lerp( (float)from, (float)to, amount );
}
///
/// Performs smooth (cubic Hermite) interpolation between 0 and 1.
///
///
/// See https://en.wikipedia.org/wiki/Smoothstep
///
/// Value between 0 and 1 indicating interpolation amount.
public static float SmoothStep( float amount )
{
return ( amount <= 0 ) ? 0
: ( amount >= 1 ) ? 1
: amount * amount * ( 3 - ( 2 * amount ) );
}
///
/// Performs a smooth(er) interpolation between 0 and 1 with 1st and 2nd order derivatives of zero at endpoints.
///
///
/// See https://en.wikipedia.org/wiki/Smoothstep
///
/// Value between 0 and 1 indicating interpolation amount.
public static float SmootherStep( float amount )
{
return ( amount <= 0 ) ? 0
: ( amount >= 1 ) ? 1
: amount * amount * amount * ( amount * ( ( amount * 6 ) - 15 ) + 10 );
}
///
/// Determines whether the value is inside the given range (inclusively).
///
/// The value.
/// The minimum value of the range.
/// The maximum value of the range.
/// true if value is inside the specified range; otherwise, false.
public static bool IsInRange( float value, float min, float max )
{
return min <= value && value <= max;
}
///
/// Determines whether the value is inside the given range (inclusively).
///
/// The value.
/// The minimum value of the range.
/// The maximum value of the range.
/// true if value is inside the specified range; otherwise, false.
public static bool IsInRange( int value, int min, int max )
{
return min <= value && value <= max;
}
///
/// Determines whether the specified x is pow2.
///
/// The x.
/// true if the specified x is pow2; otherwise, false.
public static bool IsPow2( int x )
{
return ( ( x != 0 ) && ( x & ( x - 1 ) ) == 0 );
}
///
/// Converts a float value from sRGB to linear.
///
/// The sRGB value.
/// A linear value.
public static float SRgbToLinear( float sRgbValue )
{
if( sRgbValue < 0.04045f )
return sRgbValue / 12.92f;
return (float)Math.Pow( ( sRgbValue + 0.055 ) / 1.055, 2.4 );
}
///
/// Converts a float value from linear to sRGB.
///
/// The linear value.
/// The encoded sRGB value.
public static float LinearToSRgb( float linearValue )
{
if( linearValue < 0.0031308f )
return linearValue * 12.92f;
return (float)( 1.055 * Math.Pow( linearValue, 1 / 2.4 ) - 0.055 );
}
///
/// Calculate the logarithm 2 of a floating point.
///
/// The input float
/// Log2(x)
public static float Log2( float x )
{
return (float)Math.Log( x ) / 0.6931471805599453f;
}
///
/// Calculate the logarithm 2 of an integer.
///
/// The input integer
/// the log2(i) rounded to lower integer
public static int Log2( int i )
{
var r = 0;
while( ( i >>= 1 ) != 0 )
++r;
return r;
}
///
/// Get the next power of two of an integer.
///
/// The size.
/// System.Int32.
/// https://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
public static int NextPowerOfTwo( int x )
{
if( x < 0 )
return 0;
x--;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
return x + 1;
}
///
/// Get the next power of two for a size.
///
/// The size.
/// System.Int32.
public static float NextPowerOfTwo( float size )
{
return (float)Math.Pow( 2, Math.Ceiling( Math.Log( size, 2 ) ) );
}
///
/// Get the previous power of two of the provided integer.
///
/// The value
public static int PreviousPowerOfTwo( int size )
{
return 1 << (int)Math.Floor( Math.Log( size, 2 ) );
}
///
/// Get the previous power of two of the provided float.
///
/// The value
public static float PreviousPowerOfTwo( float size )
{
return (float)Math.Pow( 2, Math.Floor( Math.Log( size, 2 ) ) );
}
///
/// Alignes value up to match desire alignment.
///
/// The value.
/// The alignment.
/// Aligned value (multiple of alignment).
[MethodImpl( MethodImplOptions.AggressiveInlining )]
public static int AlignUp( int value, int alignment )
{
int mask = alignment - 1;
return ( value + mask ) & ~mask;
}
///
/// Alignes value down to match desire alignment.
///
/// The value.
/// The alignment.
/// Aligned value (multiple of alignment).
[MethodImpl( MethodImplOptions.AggressiveInlining )]
public static int AlignDown( int value, int alignment )
{
int mask = alignment - 1;
return value & ~mask;
}
///
/// Determines whether the specified value is aligned.
///
/// The value.
/// The alignment.
/// true if the specified value is aligned; otherwise, false.
[MethodImpl( MethodImplOptions.AggressiveInlining )]
public static bool IsAligned( int value, int alignment )
{
return ( value & ( alignment - 1 ) ) == 0;
}
///
/// Snaps a value to the nearest interval.
///
/// The value to snap.
/// The interval gap.
/// The nearest interval to the provided value.
public static float Snap( float value, float gap )
{
if( gap == 0 )
return value;
return (float)Math.Round( ( value / gap ), MidpointRounding.AwayFromZero ) * gap;
}
///
/// Snaps a value to the nearest interval.
///
/// The value to snap.
/// The interval gap.
/// The nearest interval to the provided value.
public static double Snap( double value, double gap )
{
if( gap == 0 )
return value;
return Math.Round( ( value / gap ), MidpointRounding.AwayFromZero ) * gap;
}
///
/// Snaps all vector components to the nearest interval.
///
/// The vector to snap.
/// The interval gap.
/// A vector which components are snapped to the nearest interval.
public static Vec2 Snap( Vec2 value, float gap )
{
if( gap == 0 )
return value;
return new Vec2(
(float)Math.Round( ( value.X / gap ), MidpointRounding.AwayFromZero ) * gap,
(float)Math.Round( ( value.Y / gap ), MidpointRounding.AwayFromZero ) * gap );
}
///
/// Snaps all vector components to the nearest interval.
///
/// The vector to snap.
/// The interval gap.
/// A vector which components are snapped to the nearest interval.
public static Vec3 Snap( Vec3 value, float gap )
{
if( gap == 0 )
return value;
return new Vec3(
(float)Math.Round( ( value.X / gap ), MidpointRounding.AwayFromZero ) * gap,
(float)Math.Round( ( value.Y / gap ), MidpointRounding.AwayFromZero ) * gap,
(float)Math.Round( ( value.Z / gap ), MidpointRounding.AwayFromZero ) * gap );
}
///
/// Snaps all vector components to the nearest interval.
///
/// The vector to snap.
/// The interval gap.
/// A vector which components are snapped to the nearest interval.
public static Vec4 Snap( Vec4 value, float gap )
{
if( gap == 0 )
return value;
return new Vec4(
(float)Math.Round( ( value.X / gap ), MidpointRounding.AwayFromZero ) * gap,
(float)Math.Round( ( value.Y / gap ), MidpointRounding.AwayFromZero ) * gap,
(float)Math.Round( ( value.Z / gap ), MidpointRounding.AwayFromZero ) * gap,
(float)Math.Round( ( value.W / gap ), MidpointRounding.AwayFromZero ) * gap );
}
}
}