// Copyright (c) Xenko contributors (https://xenko.com) and Silicon Studio Corp. (https://www.siliconstudio.co.jp) // Distributed under the MIT license. See the LICENSE.md file in the project root for more information. using System; using System.Globalization; using System.Runtime.InteropServices; using System.Runtime.Serialization; namespace math { /// /// Represents a 32-bit color (4 bytes) in the form of RGBA (in byte order: R, G, B, A). /// [DataContract( Name = "Color" )] [DataStyle( DataStyle.Compact )] [StructLayout( LayoutKind.Sequential, Size = 4 )] public partial struct Color : IEquatable { /// /// The red component of the color. /// [DataMember( Order = 0 )] public byte R; /// /// The green component of the color. /// [DataMember( Order = 1 )] public byte G; /// /// The blue component of the color. /// [DataMember( Order = 2 )] public byte B; /// /// The alpha component of the color. /// [DataMember( Order = 3 )] public byte A; /// /// Initializes a new instance of the struct. /// /// The value that will be assigned to all components. public Color( byte value ) { A = R = G = B = value; } /// /// Initializes a new instance of the struct. /// /// The value that will be assigned to all components. public Color( float value ) { A = R = G = B = ToByte( value ); } /// /// Initializes a new instance of the struct. /// /// The red component of the color. /// The green component of the color. /// The blue component of the color. /// The alpha component of the color. public Color( byte red, byte green, byte blue, byte alpha ) { R = red; G = green; B = blue; A = alpha; } /// /// Initializes a new instance of the struct. Alpha is set to 255. /// /// The red component of the color. /// The green component of the color. /// The blue component of the color. public Color( byte red, byte green, byte blue ) { R = red; G = green; B = blue; A = 255; } /// /// Initializes a new instance of the struct. /// /// The red component of the color. /// The green component of the color. /// The blue component of the color. /// The alpha component of the color. public Color( float red, float green, float blue, float alpha ) { R = ToByte( red ); G = ToByte( green ); B = ToByte( blue ); A = ToByte( alpha ); } /// /// Initializes a new instance of the struct. Alpha is set to 255. /// /// The red component of the color. /// The green component of the color. /// The blue component of the color. public Color( float red, float green, float blue ) { R = ToByte( red ); G = ToByte( green ); B = ToByte( blue ); A = 255; } /// /// Initializes a new instance of the struct. /// /// The red, green, blue, and alpha components of the color. public Color( Vec4 value ) { R = ToByte( value.X ); G = ToByte( value.Y ); B = ToByte( value.Z ); A = ToByte( value.W ); } /// /// Initializes a new instance of the struct. /// /// The red, green, and blue components of the color. /// The alpha component of the color. public Color( Vec3 value, float alpha ) { R = ToByte( value.X ); G = ToByte( value.Y ); B = ToByte( value.Z ); A = ToByte( alpha ); } /// /// Initializes a new instance of the struct. Alpha is set to 255. /// /// The red, green, and blue components of the color. public Color( Vec3 value ) { R = ToByte( value.X ); G = ToByte( value.Y ); B = ToByte( value.Z ); A = 255; } /// /// Initializes a new instance of the struct. /// /// A packed integer containing all four color components in RGBA order. public Color( uint rgba ) { A = (byte)( ( rgba >> 24 ) & 255 ); B = (byte)( ( rgba >> 16 ) & 255 ); G = (byte)( ( rgba >> 8 ) & 255 ); R = (byte)( rgba & 255 ); } /// /// Initializes a new instance of the struct. /// /// A packed integer containing all four color components in RGBA order. public Color( int rgba ) { A = (byte)( ( rgba >> 24 ) & 255 ); B = (byte)( ( rgba >> 16 ) & 255 ); G = (byte)( ( rgba >> 8 ) & 255 ); R = (byte)( rgba & 255 ); } /// /// Initializes a new instance of the struct. /// /// The values to assign to the red, green, and blue, alpha components of the color. This must be an array with four elements. /// Thrown when is null. /// Thrown when contains more or less than four elements. public Color( float[] values ) { if( values == null ) throw new ArgumentNullException( nameof( values ) ); if( values.Length != 4 ) throw new ArgumentOutOfRangeException( nameof( values ), "There must be four and only four input values for Color." ); R = ToByte( values[0] ); G = ToByte( values[1] ); B = ToByte( values[2] ); A = ToByte( values[3] ); } /// /// Initializes a new instance of the struct. /// /// The values to assign to the alpha, red, green, and blue components of the color. This must be an array with four elements. /// Thrown when is null. /// Thrown when contains more or less than four elements. public Color( byte[] values ) { if( values == null ) throw new ArgumentNullException( nameof( values ) ); if( values.Length != 4 ) throw new ArgumentOutOfRangeException( nameof( values ), "There must be four and only four input values for Color." ); R = values[0]; G = values[1]; B = values[2]; A = values[3]; } /// /// Gets or sets the component at the specified index. /// /// The value of the alpha, red, green, or blue component, depending on the index. /// The index of the component to access. Use 0 for the alpha component, 1 for the red component, 2 for the green component, and 3 for the blue component. /// The value of the component at the specified index. /// Thrown when the is out of the range [0, 3]. public byte this[int index] { get { switch( index ) { case 0: return R; case 1: return G; case 2: return B; case 3: return A; } throw new ArgumentOutOfRangeException( nameof( index ), "Indices for Color run from 0 to 3, inclusive." ); } set { switch( index ) { case 0: R = value; break; case 1: G = value; break; case 2: B = value; break; case 3: A = value; break; default: throw new ArgumentOutOfRangeException( nameof( index ), "Indices for Color run from 0 to 3, inclusive." ); } } } /// /// Converts the color into a packed integer. /// /// A packed integer containing all four color components. public int ToBgra() { int value = B; value |= G << 8; value |= R << 16; value |= A << 24; return value; } /// /// Converts the color into a packed integer. /// /// A packed integer containing all four color components. public int ToRgba() { int value = R; value |= G << 8; value |= B << 16; value |= A << 24; return value; } /// /// Converts the color into a packed integer. /// /// A packed integer containing all four color components. public int ToArgb() { int value = A; value |= R << 8; value |= G << 16; value |= B << 24; return value; } /// /// Converts the color into a packed integer. /// /// A packed integer containing all four color components. public int ToAbgr() { int value = A; value |= B << 8; value |= G << 16; value |= R << 24; return value; } /// /// Converts the color into a three component vector. /// /// A three component vector containing the red, green, and blue components of the color. public Vec3 ToVector3() { return new Vec3( R / 255.0f, G / 255.0f, B / 255.0f ); } /// /// Converts the color into a three component color. /// /// A three component color containing the red, green, and blue components of the color. public Color3 ToColor3() { return new Color3( R / 255.0f, G / 255.0f, B / 255.0f ); } /// /// Converts the color into a four component vector. /// /// A four component vector containing all four color components. public Vec4 ToVector4() { return new Vec4( R / 255.0f, G / 255.0f, B / 255.0f, A / 255.0f ); } /// /// Creates an array containing the elements of the color. /// /// A four-element array containing the components of the color in RGBA order. public byte[] ToArray() { return new[] { R, G, B, A }; } /// /// Gets the brightness. /// /// The Hue-Saturation-Brightness (HSB) saturation for this public float GetBrightness() { float r = R / 255.0f; float g = G / 255.0f; float b = B / 255.0f; float max, min; max = r; min = r; if( g > max ) max = g; if( b > max ) max = b; if( g < min ) min = g; if( b < min ) min = b; return ( max + min ) / 2; } /// /// Gets the hue. /// /// The Hue-Saturation-Brightness (HSB) saturation for this public float GetHue() { if( R == G && G == B ) return 0; // 0 makes as good an UNDEFINED value as any float r = R / 255.0f; float g = G / 255.0f; float b = B / 255.0f; float max, min; float delta; float hue = 0.0f; max = r; min = r; if( g > max ) max = g; if( b > max ) max = b; if( g < min ) min = g; if( b < min ) min = b; delta = max - min; if( r == max ) { hue = ( g - b ) / delta; } else if( g == max ) { hue = 2 + ( b - r ) / delta; } else if( b == max ) { hue = 4 + ( r - g ) / delta; } hue *= 60; if( hue < 0.0f ) { hue += 360.0f; } return hue; } /// /// Gets the saturation. /// /// The Hue-Saturation-Brightness (HSB) saturation for this public float GetSaturation() { float r = R / 255.0f; float g = G / 255.0f; float b = B / 255.0f; float max, min; float l, s = 0; max = r; min = r; if( g > max ) max = g; if( b > max ) max = b; if( g < min ) min = g; if( b < min ) min = b; // if max == min, then there is no color and // the saturation is zero. if( max != min ) { l = ( max + min ) / 2; if( l <= .5 ) { s = ( max - min ) / ( max + min ); } else { s = ( max - min ) / ( 2 - max - min ); } } return s; } /// /// Adds two colors. /// /// The first color to add. /// The second color to add. /// When the method completes, completes the sum of the two colors. public static void Add( ref Color left, ref Color right, out Color result ) { result.A = (byte)( left.A + right.A ); result.R = (byte)( left.R + right.R ); result.G = (byte)( left.G + right.G ); result.B = (byte)( left.B + right.B ); } /// /// Adds two colors. /// /// The first color to add. /// The second color to add. /// The sum of the two colors. public static Color Add( Color left, Color right ) { return new Color( (byte)( left.R + right.R ), (byte)( left.G + right.G ), (byte)( left.B + right.B ), (byte)( left.A + right.A ) ); } /// /// Subtracts two colors. /// /// The first color to subtract. /// The second color to subtract. /// WHen the method completes, contains the difference of the two colors. public static void Subtract( ref Color left, ref Color right, out Color result ) { result.A = (byte)( left.A - right.A ); result.R = (byte)( left.R - right.R ); result.G = (byte)( left.G - right.G ); result.B = (byte)( left.B - right.B ); } /// /// Subtracts two colors. /// /// The first color to subtract. /// The second color to subtract /// The difference of the two colors. public static Color Subtract( Color left, Color right ) { return new Color( (byte)( left.R - right.R ), (byte)( left.G - right.G ), (byte)( left.B - right.B ), (byte)( left.A - right.A ) ); } /// /// Modulates two colors. /// /// The first color to modulate. /// The second color to modulate. /// When the method completes, contains the modulated color. public static void Modulate( ref Color left, ref Color right, out Color result ) { result.A = (byte)( left.A * right.A / 255 ); result.R = (byte)( left.R * right.R / 255 ); result.G = (byte)( left.G * right.G / 255 ); result.B = (byte)( left.B * right.B / 255 ); } /// /// Modulates two colors. /// /// The first color to modulate. /// The second color to modulate. /// The modulated color. public static Color Modulate( Color left, Color right ) { return new Color( (byte)( left.R * right.R / 255 ), (byte)( left.G * right.G / 255 ), (byte)( left.B * right.B / 255 ), (byte)( left.A * right.A / 255 ) ); } /// /// Scales a color. /// /// The color to scale. /// The amount by which to scale. /// When the method completes, contains the scaled color. public static void Scale( ref Color value, float scale, out Color result ) { result.A = (byte)( value.A * scale ); result.R = (byte)( value.R * scale ); result.G = (byte)( value.G * scale ); result.B = (byte)( value.B * scale ); } /// /// Scales a color. /// /// The color to scale. /// The amount by which to scale. /// The scaled color. public static Color Scale( Color value, float scale ) { return new Color( (byte)( value.R * scale ), (byte)( value.G * scale ), (byte)( value.B * scale ), (byte)( value.A * scale ) ); } /// /// Negates a color. /// /// The color to negate. /// When the method completes, contains the negated color. public static void Negate( ref Color value, out Color result ) { result.A = (byte)( 255 - value.A ); result.R = (byte)( 255 - value.R ); result.G = (byte)( 255 - value.G ); result.B = (byte)( 255 - value.B ); } /// /// Negates a color. /// /// The color to negate. /// The negated color. public static Color Negate( Color value ) { return new Color( (byte)( 255 - value.R ), (byte)( 255 - value.G ), (byte)( 255 - value.B ), (byte)( 255 - value.A ) ); } /// /// Restricts a value to be within a specified range. /// /// The value to clamp. /// The minimum value. /// The maximum value. /// When the method completes, contains the clamped value. public static void Clamp( ref Color value, ref Color min, ref Color max, out Color result ) { byte alpha = value.A; alpha = ( alpha > max.A ) ? max.A : alpha; alpha = ( alpha < min.A ) ? min.A : alpha; byte red = value.R; red = ( red > max.R ) ? max.R : red; red = ( red < min.R ) ? min.R : red; byte green = value.G; green = ( green > max.G ) ? max.G : green; green = ( green < min.G ) ? min.G : green; byte blue = value.B; blue = ( blue > max.B ) ? max.B : blue; blue = ( blue < min.B ) ? min.B : blue; result = new Color( red, green, blue, alpha ); } /// /// Converts the color from a packed BGRA integer. /// /// A packed integer containing all four color components in BGRA order /// A color. public static Color FromBgra( int color ) { return new Color( (byte)( ( color >> 16 ) & 255 ), (byte)( ( color >> 8 ) & 255 ), (byte)( color & 255 ), (byte)( ( color >> 24 ) & 255 ) ); } /// /// Converts the color from a packed BGRA integer. /// /// A packed integer containing all four color components in BGRA order /// A color. public static Color FromBgra( uint color ) { return FromBgra( unchecked((int)color) ); } /// /// Converts the color from a packed ABGR integer. /// /// A packed integer containing all four color components in ABGR order /// A color. public static Color FromAbgr( int color ) { return new Color( (byte)( color >> 24 ), (byte)( color >> 16 ), (byte)( color >> 8 ), (byte)color ); } /// /// Converts the color from a packed ABGR integer. /// /// A packed integer containing all four color components in ABGR order /// A color. public static Color FromAbgr( uint color ) { return FromAbgr( unchecked((int)color) ); } /// /// Converts the color from a packed RGBA integer. /// /// A packed integer containing all four color components in RGBA order /// A color. public static Color FromRgba( int color ) { return new Color( color ); } /// /// Converts the color from a packed RGBA integer. /// /// A packed integer containing all four color components in RGBA order /// A color. public static Color FromRgba( uint color ) { return new Color( color ); } /// /// Restricts a value to be within a specified range. /// /// The value to clamp. /// The minimum value. /// The maximum value. /// The clamped value. public static Color Clamp( Color value, Color min, Color max ) { Color result; Clamp( ref value, ref min, ref max, out result ); return result; } /// /// Performs a linear interpolation between two colors. /// /// Start color. /// End color. /// Value between 0 and 1 indicating the weight of . /// When the method completes, contains the linear interpolation of the two colors. /// /// Passing a value of 0 will cause to be returned; a value of 1 will cause to be returned. /// public static void Lerp( ref Color start, ref Color end, float amount, out Color result ) { result.R = MathUtil.Lerp( start.R, end.R, amount ); result.G = MathUtil.Lerp( start.G, end.G, amount ); result.B = MathUtil.Lerp( start.B, end.B, amount ); result.A = MathUtil.Lerp( start.A, end.A, amount ); } /// /// Performs a linear interpolation between two colors. /// /// Start color. /// End color. /// Value between 0 and 1 indicating the weight of . /// The linear interpolation of the two colors. /// /// Passing a value of 0 will cause to be returned; a value of 1 will cause to be returned. /// public static Color Lerp( Color start, Color end, float amount ) { Color result; Lerp( ref start, ref end, amount, out result ); return result; } /// /// Performs a cubic interpolation between two colors. /// /// Start color. /// End color. /// Value between 0 and 1 indicating the weight of . /// When the method completes, contains the cubic interpolation of the two colors. public static void SmoothStep( ref Color start, ref Color end, float amount, out Color result ) { amount = MathUtil.SmoothStep( amount ); Lerp( ref start, ref end, amount, out result ); } /// /// Performs a cubic interpolation between two colors. /// /// Start color. /// End color. /// Value between 0 and 1 indicating the weight of . /// The cubic interpolation of the two colors. public static Color SmoothStep( Color start, Color end, float amount ) { Color result; SmoothStep( ref start, ref end, amount, out result ); return result; } /// /// Returns a color containing the smallest components of the specified colors. /// /// The first source color. /// The second source color. /// When the method completes, contains an new color composed of the largest components of the source colors. public static void Max( ref Color left, ref Color right, out Color result ) { result.A = ( left.A > right.A ) ? left.A : right.A; result.R = ( left.R > right.R ) ? left.R : right.R; result.G = ( left.G > right.G ) ? left.G : right.G; result.B = ( left.B > right.B ) ? left.B : right.B; } /// /// Returns a color containing the largest components of the specified colorss. /// /// The first source color. /// The second source color. /// A color containing the largest components of the source colors. public static Color Max( Color left, Color right ) { Color result; Max( ref left, ref right, out result ); return result; } /// /// Returns a color containing the smallest components of the specified colors. /// /// The first source color. /// The second source color. /// When the method completes, contains an new color composed of the smallest components of the source colors. public static void Min( ref Color left, ref Color right, out Color result ) { result.A = ( left.A < right.A ) ? left.A : right.A; result.R = ( left.R < right.R ) ? left.R : right.R; result.G = ( left.G < right.G ) ? left.G : right.G; result.B = ( left.B < right.B ) ? left.B : right.B; } /// /// Returns a color containing the smallest components of the specified colors. /// /// The first source color. /// The second source color. /// A color containing the smallest components of the source colors. public static Color Min( Color left, Color right ) { Color result; Min( ref left, ref right, out result ); return result; } /// /// Adjusts the contrast of a color. /// /// The color whose contrast is to be adjusted. /// The amount by which to adjust the contrast. /// When the method completes, contains the adjusted color. public static void AdjustContrast( ref Color value, float contrast, out Color result ) { result.A = value.A; result.R = ToByte( 0.5f + contrast * ( value.R / 255.0f - 0.5f ) ); result.G = ToByte( 0.5f + contrast * ( value.G / 255.0f - 0.5f ) ); result.B = ToByte( 0.5f + contrast * ( value.B / 255.0f - 0.5f ) ); } /// /// Adjusts the contrast of a color. /// /// The color whose contrast is to be adjusted. /// The amount by which to adjust the contrast. /// The adjusted color. public static Color AdjustContrast( Color value, float contrast ) { return new Color( ToByte( 0.5f + contrast * ( value.R / 255.0f - 0.5f ) ), ToByte( 0.5f + contrast * ( value.G / 255.0f - 0.5f ) ), ToByte( 0.5f + contrast * ( value.B / 255.0f - 0.5f ) ), value.A ); } /// /// Adjusts the saturation of a color. /// /// The color whose saturation is to be adjusted. /// The amount by which to adjust the saturation. /// When the method completes, contains the adjusted color. public static void AdjustSaturation( ref Color value, float saturation, out Color result ) { float grey = value.R / 255.0f * 0.2125f + value.G / 255.0f * 0.7154f + value.B / 255.0f * 0.0721f; result.A = value.A; result.R = ToByte( grey + saturation * ( value.R / 255.0f - grey ) ); result.G = ToByte( grey + saturation * ( value.G / 255.0f - grey ) ); result.B = ToByte( grey + saturation * ( value.B / 255.0f - grey ) ); } /// /// Adjusts the saturation of a color. /// /// The color whose saturation is to be adjusted. /// The amount by which to adjust the saturation. /// The adjusted color. public static Color AdjustSaturation( Color value, float saturation ) { float grey = value.R / 255.0f * 0.2125f + value.G / 255.0f * 0.7154f + value.B / 255.0f * 0.0721f; return new Color( ToByte( grey + saturation * ( value.R / 255.0f - grey ) ), ToByte( grey + saturation * ( value.G / 255.0f - grey ) ), ToByte( grey + saturation * ( value.B / 255.0f - grey ) ), value.A ); } /// /// Adds two colors. /// /// The first color to add. /// The second color to add. /// The sum of the two colors. public static Color operator +( Color left, Color right ) { return new Color( (byte)( left.R + right.R ), (byte)( left.G + right.G ), (byte)( left.B + right.B ), (byte)( left.A + right.A ) ); } /// /// Assert a color (return it unchanged). /// /// The color to assert (unchanged). /// The asserted (unchanged) color. public static Color operator +( Color value ) { return value; } /// /// Subtracts two colors. /// /// The first color to subtract. /// The second color to subtract. /// The difference of the two colors. public static Color operator -( Color left, Color right ) { return new Color( (byte)( left.R - right.R ), (byte)( left.G - right.G ), (byte)( left.B - right.B ), (byte)( left.A - right.A ) ); } /// /// Negates a color. /// /// The color to negate. /// A negated color. public static Color operator -( Color value ) { return new Color( -value.R, -value.G, -value.B, -value.A ); } /// /// Scales a color. /// /// The factor by which to scale the color. /// The color to scale. /// The scaled color. public static Color operator *( float scale, Color value ) { return new Color( (byte)( value.R * scale ), (byte)( value.G * scale ), (byte)( value.B * scale ), (byte)( value.A * scale ) ); } /// /// Scales a color. /// /// The factor by which to scale the color. /// The color to scale. /// The scaled color. public static Color operator *( Color value, float scale ) { return new Color( (byte)( value.R * scale ), (byte)( value.G * scale ), (byte)( value.B * scale ), (byte)( value.A * scale ) ); } /// /// Modulates two colors. /// /// The first color to modulate. /// The second color to modulate. /// The modulated color. public static Color operator *( Color left, Color right ) { return new Color( (byte)( left.R * right.R / 255.0f ), (byte)( left.G * right.G / 255.0f ), (byte)( left.B * right.B / 255.0f ), (byte)( left.A * right.A / 255.0f ) ); } /// /// Tests for equality between two objects. /// /// The first value to compare. /// The second value to compare. /// true if has the same value as ; otherwise, false. public static bool operator ==( Color left, Color right ) { return left.Equals( right ); } /// /// Tests for inequality between two objects. /// /// The first value to compare. /// The second value to compare. /// true if has a different value than ; otherwise, false. public static bool operator !=( Color left, Color right ) { return !left.Equals( right ); } /// /// Performs an explicit conversion from to . /// /// The value. /// The result of the conversion. public static explicit operator Color3( Color value ) { return value.ToColor3(); } /// /// Performs an explicit conversion from to . /// /// The value. /// The result of the conversion. public static explicit operator Vec3( Color value ) { return new Vec3( value.R / 255.0f, value.G / 255.0f, value.B / 255.0f ); } /// /// Performs an explicit conversion from to . /// /// The value. /// The result of the conversion. public static explicit operator Vec4( Color value ) { return new Vec4( value.R / 255.0f, value.G / 255.0f, value.B / 255.0f, value.A / 255.0f ); } /// /// Convert this instance to a /// /// The result of the conversion. public Color4 ToColor4() { return new Color4( R / 255.0f, G / 255.0f, B / 255.0f, A / 255.0f ); } /// /// Performs an implicit conversion from to . /// /// The value. /// The result of the conversion. public static implicit operator Color4( Color value ) { return value.ToColor4(); } /// /// Performs an explicit conversion from to . /// /// The value. /// The result of the conversion. public static explicit operator Color( Vec3 value ) { return new Color( value.X, value.Y, value.Z, 1.0f ); } /// /// Performs an explicit conversion from to . /// /// The value. /// The result of the conversion. public static explicit operator Color( Color3 value ) { return new Color( value.R, value.G, value.B, 1.0f ); } /// /// Performs an explicit conversion from to . /// /// The value. /// The result of the conversion. public static explicit operator Color( Vec4 value ) { return new Color( value.X, value.Y, value.Z, value.W ); } /// /// Performs an explicit conversion from to . /// /// The value. /// The result of the conversion. public static explicit operator Color( Color4 value ) { return new Color( value.R, value.G, value.B, value.A ); } /// /// Performs an explicit conversion from to . /// /// The value. /// /// The result of the conversion. /// public static explicit operator int( Color value ) { return value.ToRgba(); } /// /// Performs an explicit conversion from to . /// /// The value. /// /// The result of the conversion. /// public static explicit operator Color( int value ) { return new Color( value ); } /// /// Returns a that represents this instance. /// /// /// A that represents this instance. /// public override string ToString() { return ColorExtensions.RgbaToString( ToRgba() ); } /// /// Returns a hash code for this instance. /// /// /// A hash code for this instance, suitable for use in hashing algorithms and data structures like a hash table. /// public override int GetHashCode() { return A.GetHashCode() + R.GetHashCode() + G.GetHashCode() + B.GetHashCode(); } /// /// Determines whether the specified is equal to this instance. /// /// The to compare with this instance. /// /// true if the specified is equal to this instance; otherwise, false. /// public bool Equals( Color other ) { return R == other.R && G == other.G && B == other.B && A == other.A; } /// /// Determines whether the specified is equal to this instance. /// /// The to compare with this instance. /// /// true if the specified is equal to this instance; otherwise, false. /// public override bool Equals( object value ) { if( value == null ) return false; if( !ReferenceEquals( value.GetType(), typeof( Color ) ) ) return false; return Equals( (Color)value ); } private static byte ToByte( float component ) { var value = (int)( component * 255.0f ); return (byte)( value < 0 ? 0 : value > 255 ? 255 : value ); } } }