// Copyright (c) Xenko contributors (https://xenko.com) and Silicon Studio Corp. (https://www.siliconstudio.co.jp)
// Distributed under the MIT license. See the LICENSE.md file in the project root for more information.
//
// -----------------------------------------------------------------------------
// Original code from SlimMath project. http://code.google.com/p/slimmath/
// Greetings to SlimDX Group. Original code published with the following license:
// -----------------------------------------------------------------------------
/*
* Copyright (c) 2007-2011 SlimDX Group
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
using System;
using System.Globalization;
using System.Runtime.InteropServices;
using System.Runtime.Serialization;
namespace math
{
///
/// Represents a plane in three dimensional space.
///
[DataContract]
[StructLayout(LayoutKind.Sequential, Pack = 4)]
public struct Plane : IEquatable, IFormattable
{
///
/// The normal vector of the plane.
///
public Vec3 Normal;
///
/// The distance of the plane along its normal from the origin.
///
public float D;
///
/// Initializes a new instance of the struct.
///
/// The value that will be assigned to all components.
public Plane(float value)
{
Normal.X = Normal.Y = Normal.Z = D = value;
}
///
/// Initializes a new instance of the struct.
///
/// The X component of the normal.
/// The Y component of the normal.
/// The Z component of the normal.
/// The distance of the plane along its normal from the origin.
public Plane(float a, float b, float c, float d)
{
Normal.X = a;
Normal.Y = b;
Normal.Z = c;
D = d;
}
///
/// Initializes a new instance of the struct.
///
/// Any point that lies along the plane.
/// The normal vector to the plane.
public Plane(Vec3 point, Vec3 normal)
{
this.Normal = normal;
this.D = Vec3.Dot(normal, point);
}
///
/// Initializes a new instance of the struct.
///
/// The normal of the plane.
/// The distance of the plane along its normal from the origin
public Plane(Vec3 value, float d)
{
Normal = value;
D = d;
}
///
/// Initializes a new instance of the struct.
///
/// First point of a triangle defining the plane.
/// Second point of a triangle defining the plane.
/// Third point of a triangle defining the plane.
public Plane(Vec3 point1, Vec3 point2, Vec3 point3)
{
float x1 = point2.X - point1.X;
float y1 = point2.Y - point1.Y;
float z1 = point2.Z - point1.Z;
float x2 = point3.X - point1.X;
float y2 = point3.Y - point1.Y;
float z2 = point3.Z - point1.Z;
float yz = (y1 * z2) - (z1 * y2);
float xz = (z1 * x2) - (x1 * z2);
float xy = (x1 * y2) - (y1 * x2);
float invPyth = 1.0f / (float)(Math.Sqrt((yz * yz) + (xz * xz) + (xy * xy)));
Normal.X = yz * invPyth;
Normal.Y = xz * invPyth;
Normal.Z = xy * invPyth;
D = -((Normal.X * point1.X) + (Normal.Y * point1.Y) + (Normal.Z * point1.Z));
}
///
/// Initializes a new instance of the struct.
///
/// The values to assign to the A, B, C, and D components of the plane. This must be an array with four elements.
/// Thrown when is null.
/// Thrown when contains more or less than four elements.
public Plane(float[] values)
{
if (values == null)
throw new ArgumentNullException("values");
if (values.Length != 4)
throw new ArgumentOutOfRangeException("values", "There must be four and only four input values for Plane.");
Normal.X = values[0];
Normal.Y = values[1];
Normal.Z = values[2];
D = values[3];
}
///
/// Gets or sets the component at the specified index.
///
/// The value of the A, B, C, or D component, depending on the index.
/// The index of the component to access. Use 0 for the A component, 1 for the B component, 2 for the C component, and 3 for the D component.
/// The value of the component at the specified index.
/// Thrown when the is out of the range [0, 3].
public float this[int index]
{
get
{
switch (index)
{
case 0: return Normal.X;
case 1: return Normal.Y;
case 2: return Normal.Z;
case 3: return D;
}
throw new ArgumentOutOfRangeException("index", "Indices for Plane run from 0 to 3, inclusive.");
}
set
{
switch (index)
{
case 0: Normal.X = value; break;
case 1: Normal.Y = value; break;
case 2: Normal.Z = value; break;
case 3: D = value; break;
default: throw new ArgumentOutOfRangeException("index", "Indices for Plane run from 0 to 3, inclusive.");
}
}
}
///
/// Negates a plane by negating all its coefficients, which result in a plane in opposite direction.
///
public void Negate()
{
Normal.X = -Normal.X;
Normal.Y = -Normal.Y;
Normal.Z = -Normal.Z;
D = -D;
}
///
/// Changes the coefficients of the normal vector of the plane to make it of unit length.
///
public void Normalize()
{
float magnitude = 1.0f / (float)(Math.Sqrt((Normal.X * Normal.X) + (Normal.Y * Normal.Y) + (Normal.Z * Normal.Z)));
Normal.X *= magnitude;
Normal.Y *= magnitude;
Normal.Z *= magnitude;
D *= magnitude;
}
///
/// Creates an array containing the elements of the plane.
///
/// A four-element array containing the components of the plane.
public float[] ToArray()
{
return new float[] { Normal.X, Normal.Y, Normal.Z, D };
}
///
/// Determines if there is an intersection between the current object and a point.
///
/// The point to test.
/// Whether the two objects intersected.
public PlaneIntersectionType Intersects(ref Vec3 point)
{
return CollisionHelper.PlaneIntersectsPoint(ref this, ref point);
}
///
/// Determines if there is an intersection between the current object and a .
///
/// The ray to test.
/// Whether the two objects intersected.
public bool Intersects(ref Ray ray)
{
float distance;
return CollisionHelper.RayIntersectsPlane(ref ray, ref this, out distance);
}
///
/// Determines if there is an intersection between the current object and a .
///
/// The ray to test.
/// When the method completes, contains the distance of the intersection,
/// or 0 if there was no intersection.
/// Whether the two objects intersected.
public bool Intersects(ref Ray ray, out float distance)
{
return CollisionHelper.RayIntersectsPlane(ref ray, ref this, out distance);
}
///
/// Determines if there is an intersection between the current object and a .
///
/// The ray to test.
/// When the method completes, contains the point of intersection,
/// or if there was no intersection.
/// Whether the two objects intersected.
public bool Intersects(ref Ray ray, out Vec3 point)
{
return CollisionHelper.RayIntersectsPlane(ref ray, ref this, out point);
}
///
/// Determines if there is an intersection between the current object and a .
///
/// The plane to test.
/// Whether the two objects intersected.
public bool Intersects(ref Plane plane)
{
return CollisionHelper.PlaneIntersectsPlane(ref this, ref plane);
}
///
/// Determines if there is an intersection between the current object and a .
///
/// The plane to test.
/// When the method completes, contains the line of intersection
/// as a , or a zero ray if there was no intersection.
/// Whether the two objects intersected.
public bool Intersects(ref Plane plane, out Ray line)
{
return CollisionHelper.PlaneIntersectsPlane(ref this, ref plane, out line);
}
///
/// Determines if there is an intersection between the current object and a triangle.
///
/// The first vertex of the triangle to test.
/// The second vertex of the triagnle to test.
/// The third vertex of the triangle to test.
/// Whether the two objects intersected.
public PlaneIntersectionType Intersects(ref Vec3 vertex1, ref Vec3 vertex2, ref Vec3 vertex3)
{
return CollisionHelper.PlaneIntersectsTriangle(ref this, ref vertex1, ref vertex2, ref vertex3);
}
///
/// Determines if there is an intersection between the current object and a .
///
/// The box to test.
/// Whether the two objects intersected.
public PlaneIntersectionType Intersects(ref BoundingBox box)
{
return CollisionHelper.PlaneIntersectsBox(ref this, ref box);
}
///
/// Determines if there is an intersection between the current object and a .
///
/// The sphere to test.
/// Whether the two objects intersected.
public PlaneIntersectionType Intersects(ref BoundingSphere sphere)
{
return CollisionHelper.PlaneIntersectsSphere(ref this, ref sphere);
}
///
/// Scales the plane by the given scaling factor.
///
/// The plane to scale.
/// The amount by which to scale the plane.
/// When the method completes, contains the scaled plane.
public static void Multiply(ref Plane value, float scale, out Plane result)
{
result.Normal.X = value.Normal.X * scale;
result.Normal.Y = value.Normal.Y * scale;
result.Normal.Z = value.Normal.Z * scale;
result.D = value.D * scale;
}
///
/// Scales the plane by the given scaling factor.
///
/// The plane to scale.
/// The amount by which to scale the plane.
/// The scaled plane.
public static Plane Multiply(Plane value, float scale)
{
return new Plane(value.Normal.X * scale, value.Normal.Y * scale, value.Normal.Z * scale, value.D * scale);
}
///
/// Calculates the dot product of the specified vector and plane.
///
/// The source plane.
/// The source vector.
/// When the method completes, contains the dot product of the specified plane and vector.
public static void Dot(ref Plane left, ref Vec4 right, out float result)
{
result = (left.Normal.X * right.X) + (left.Normal.Y * right.Y) + (left.Normal.Z * right.Z) + (left.D * right.W);
}
///
/// Calculates the dot product of the specified vector and plane.
///
/// The source plane.
/// The source vector.
/// The dot product of the specified plane and vector.
public static float Dot(Plane left, Vec4 right)
{
return (left.Normal.X * right.X) + (left.Normal.Y * right.Y) + (left.Normal.Z * right.Z) + (left.D * right.W);
}
///
/// Calculates the dot product of a specified vector and the normal of the plane plus the distance value of the plane.
///
/// The source plane.
/// The source vector.
/// When the method completes, contains the dot product of a specified vector and the normal of the Plane plus the distance value of the plane.
public static void DotCoordinate(ref Plane left, ref Vec3 right, out float result)
{
result = (left.Normal.X * right.X) + (left.Normal.Y * right.Y) + (left.Normal.Z * right.Z) + left.D;
}
///
/// Calculates the dot product of a specified vector and the normal of the plane plus the distance value of the plane.
///
/// The source plane.
/// The source vector.
/// The dot product of a specified vector and the normal of the Plane plus the distance value of the plane.
public static float DotCoordinate(Plane left, Vec3 right)
{
return (left.Normal.X * right.X) + (left.Normal.Y * right.Y) + (left.Normal.Z * right.Z) + left.D;
}
///
/// Calculates the dot product of the specified vector and the normal of the plane.
///
/// The source plane.
/// The source vector.
/// When the method completes, contains the dot product of the specified vector and the normal of the plane.
public static void DotNormal(ref Plane left, ref Vec3 right, out float result)
{
result = (left.Normal.X * right.X) + (left.Normal.Y * right.Y) + (left.Normal.Z * right.Z);
}
///
/// Calculates the dot product of the specified vector and the normal of the plane.
///
/// The source plane.
/// The source vector.
/// The dot product of the specified vector and the normal of the plane.
public static float DotNormal(Plane left, Vec3 right)
{
return (left.Normal.X * right.X) + (left.Normal.Y * right.Y) + (left.Normal.Z * right.Z);
}
///
/// Projects a point onto a plane.
///
/// The plane to project the point to.
/// The point to project.
/// The projected point.
public static void Project(ref Plane plane, ref Vec3 point, out Vec3 result)
{
float distance;
DotCoordinate(ref plane, ref point, out distance);
// compute: point - distance * plane.Normal
Vec3.Multiply(ref plane.Normal, distance, out result);
Vec3.Subtract(ref point, ref result, out result);
}
///
/// Projects a point onto a plane.
///
/// The plane to project the point to.
/// The point to project.
/// The projected point.
public static Vec3 Project(Plane plane, Vec3 point)
{
Vec3 result;
Project(ref plane, ref point, out result);
return result;
}
///
/// Changes the coefficients of the normal vector of the plane to make it of unit length.
///
/// The source plane.
/// When the method completes, contains the normalized plane.
public static void Normalize(ref Plane plane, out Plane result)
{
float magnitude = 1.0f / (float)(Math.Sqrt((plane.Normal.X * plane.Normal.X) + (plane.Normal.Y * plane.Normal.Y) + (plane.Normal.Z * plane.Normal.Z)));
result.Normal.X = plane.Normal.X * magnitude;
result.Normal.Y = plane.Normal.Y * magnitude;
result.Normal.Z = plane.Normal.Z * magnitude;
result.D = plane.D * magnitude;
}
///
/// Changes the coefficients of the normal vector of the plane to make it of unit length.
///
/// The source plane.
/// The normalized plane.
public static Plane Normalize(Plane plane)
{
float magnitude = 1.0f / (float)(Math.Sqrt((plane.Normal.X * plane.Normal.X) + (plane.Normal.Y * plane.Normal.Y) + (plane.Normal.Z * plane.Normal.Z)));
return new Plane(plane.Normal.X * magnitude, plane.Normal.Y * magnitude, plane.Normal.Z * magnitude, plane.D * magnitude);
}
///
/// Negates a plane by negating all its coefficients, which result in a plane in opposite direction.
///
/// The source plane.
/// When the method completes, contains the flipped plane.
public static void Negate(ref Plane plane, out Plane result)
{
result.Normal.X = -plane.Normal.X;
result.Normal.Y = -plane.Normal.Y;
result.Normal.Z = -plane.Normal.Z;
result.D = -plane.D;
}
///
/// Negates a plane by negating all its coefficients, which result in a plane in opposite direction.
///
/// The source plane.
/// The flipped plane.
public static Plane Negate(Plane plane)
{
float magnitude = 1.0f / (float)(Math.Sqrt((plane.Normal.X * plane.Normal.X) + (plane.Normal.Y * plane.Normal.Y) + (plane.Normal.Z * plane.Normal.Z)));
return new Plane(plane.Normal.X * magnitude, plane.Normal.Y * magnitude, plane.Normal.Z * magnitude, plane.D * magnitude);
}
///
/// Transforms a normalized plane by a quaternion rotation.
///
/// The normalized source plane.
/// The quaternion rotation.
/// When the method completes, contains the transformed plane.
public static void Transform(ref Plane plane, ref Quaternion rotation, out Plane result)
{
float x2 = rotation.X + rotation.X;
float y2 = rotation.Y + rotation.Y;
float z2 = rotation.Z + rotation.Z;
float wx = rotation.W * x2;
float wy = rotation.W * y2;
float wz = rotation.W * z2;
float xx = rotation.X * x2;
float xy = rotation.X * y2;
float xz = rotation.X * z2;
float yy = rotation.Y * y2;
float yz = rotation.Y * z2;
float zz = rotation.Z * z2;
float x = plane.Normal.X;
float y = plane.Normal.Y;
float z = plane.Normal.Z;
result.Normal.X = ((x * ((1.0f - yy) - zz)) + (y * (xy - wz))) + (z * (xz + wy));
result.Normal.Y = ((x * (xy + wz)) + (y * ((1.0f - xx) - zz))) + (z * (yz - wx));
result.Normal.Z = ((x * (xz - wy)) + (y * (yz + wx))) + (z * ((1.0f - xx) - yy));
result.D = plane.D;
}
///
/// Transforms a normalized plane by a quaternion rotation.
///
/// The normalized source plane.
/// The quaternion rotation.
/// The transformed plane.
public static Plane Transform(Plane plane, Quaternion rotation)
{
Plane result;
float x2 = rotation.X + rotation.X;
float y2 = rotation.Y + rotation.Y;
float z2 = rotation.Z + rotation.Z;
float wx = rotation.W * x2;
float wy = rotation.W * y2;
float wz = rotation.W * z2;
float xx = rotation.X * x2;
float xy = rotation.X * y2;
float xz = rotation.X * z2;
float yy = rotation.Y * y2;
float yz = rotation.Y * z2;
float zz = rotation.Z * z2;
float x = plane.Normal.X;
float y = plane.Normal.Y;
float z = plane.Normal.Z;
result.Normal.X = ((x * ((1.0f - yy) - zz)) + (y * (xy - wz))) + (z * (xz + wy));
result.Normal.Y = ((x * (xy + wz)) + (y * ((1.0f - xx) - zz))) + (z * (yz - wx));
result.Normal.Z = ((x * (xz - wy)) + (y * (yz + wx))) + (z * ((1.0f - xx) - yy));
result.D = plane.D;
return result;
}
///
/// Transforms an array of normalized planes by a quaternion rotation.
///
/// The array of normalized planes to transform.
/// The quaternion rotation.
/// Thrown when is null.
public static void Transform(Plane[] planes, ref Quaternion rotation)
{
if (planes == null)
throw new ArgumentNullException("planes");
float x2 = rotation.X + rotation.X;
float y2 = rotation.Y + rotation.Y;
float z2 = rotation.Z + rotation.Z;
float wx = rotation.W * x2;
float wy = rotation.W * y2;
float wz = rotation.W * z2;
float xx = rotation.X * x2;
float xy = rotation.X * y2;
float xz = rotation.X * z2;
float yy = rotation.Y * y2;
float yz = rotation.Y * z2;
float zz = rotation.Z * z2;
for (int i = 0; i < planes.Length; ++i)
{
float x = planes[i].Normal.X;
float y = planes[i].Normal.Y;
float z = planes[i].Normal.Z;
/*
* Note:
* Factor common arithmetic out of loop.
*/
planes[i].Normal.X = ((x * ((1.0f - yy) - zz)) + (y * (xy - wz))) + (z * (xz + wy));
planes[i].Normal.Y = ((x * (xy + wz)) + (y * ((1.0f - xx) - zz))) + (z * (yz - wx));
planes[i].Normal.Z = ((x * (xz - wy)) + (y * (yz + wx))) + (z * ((1.0f - xx) - yy));
}
}
///
/// Transforms a normalized plane by a matrix.
///
/// The normalized source plane.
/// The transformation matrix.
/// When the method completes, contains the transformed plane.
public static void Transform(ref Plane plane, ref Matrix transformation, out Plane result)
{
float x = plane.Normal.X;
float y = plane.Normal.Y;
float z = plane.Normal.Z;
float d = plane.D;
Matrix inverse;
Matrix.Invert(ref transformation, out inverse);
result.Normal.X = (((x * inverse.M11) + (y * inverse.M12)) + (z * inverse.M13)) + (d * inverse.M14);
result.Normal.Y = (((x * inverse.M21) + (y * inverse.M22)) + (z * inverse.M23)) + (d * inverse.M24);
result.Normal.Z = (((x * inverse.M31) + (y * inverse.M32)) + (z * inverse.M33)) + (d * inverse.M34);
result.D = (((x * inverse.M41) + (y * inverse.M42)) + (z * inverse.M43)) + (d * inverse.M44);
}
///
/// Transforms a normalized plane by a matrix.
///
/// The normalized source plane.
/// The transformation matrix.
/// When the method completes, contains the transformed plane.
public static Plane Transform(Plane plane, Matrix transformation)
{
Plane result;
float x = plane.Normal.X;
float y = plane.Normal.Y;
float z = plane.Normal.Z;
float d = plane.D;
transformation.Invert();
result.Normal.X = (((x * transformation.M11) + (y * transformation.M12)) + (z * transformation.M13)) + (d * transformation.M14);
result.Normal.Y = (((x * transformation.M21) + (y * transformation.M22)) + (z * transformation.M23)) + (d * transformation.M24);
result.Normal.Z = (((x * transformation.M31) + (y * transformation.M32)) + (z * transformation.M33)) + (d * transformation.M34);
result.D = (((x * transformation.M41) + (y * transformation.M42)) + (z * transformation.M43)) + (d * transformation.M44);
return result;
}
///
/// Transforms an array of normalized planes by a matrix.
///
/// The array of normalized planes to transform.
/// The transformation matrix.
/// Thrown when is null.
public static void Transform(Plane[] planes, ref Matrix transformation)
{
if (planes == null)
throw new ArgumentNullException("planes");
Matrix inverse;
Matrix.Invert(ref transformation, out inverse);
for (int i = 0; i < planes.Length; ++i)
{
Transform(ref planes[i], ref transformation, out planes[i]);
}
}
///
/// Scales a plane by the given value.
///
/// The amount by which to scale the plane.
/// The plane to scale.
/// The scaled plane.
public static Plane operator *(float scale, Plane plane)
{
return new Plane(plane.Normal.X * scale, plane.Normal.Y * scale, plane.Normal.Z * scale, plane.D * scale);
}
///
/// Scales a plane by the given value.
///
/// The plane to scale.
/// The amount by which to scale the plane.
/// The scaled plane.
public static Plane operator *(Plane plane, float scale)
{
return new Plane(plane.Normal.X * scale, plane.Normal.Y * scale, plane.Normal.Z * scale, plane.D * scale);
}
///
/// Negates a plane by negating all its coefficients, which result in a plane in opposite direction.
///
/// The negated plane.
public static Plane operator -(Plane plane)
{
return new Plane(-plane.Normal.X, -plane.Normal.Y, -plane.Normal.Z, -plane.D);
}
///
/// Tests for equality between two objects.
///
/// The first value to compare.
/// The second value to compare.
/// true if has the same value as ; otherwise, false.
public static bool operator ==(Plane left, Plane right)
{
return left.Equals(right);
}
///
/// Tests for inequality between two objects.
///
/// The first value to compare.
/// The second value to compare.
/// true if has a different value than ; otherwise, false.
public static bool operator !=(Plane left, Plane right)
{
return !left.Equals(right);
}
///
/// Returns a that represents this instance.
///
///
/// A that represents this instance.
///
public override string ToString()
{
return string.Format(CultureInfo.CurrentCulture, "A:{0} B:{1} C:{2} D:{3}", Normal.X, Normal.Y, Normal.Z, D);
}
///
/// Returns a that represents this instance.
///
/// The format.
///
/// A that represents this instance.
///
public string ToString(string format)
{
return string.Format(CultureInfo.CurrentCulture, "A:{0} B:{1} C:{2} D:{3}", Normal.X.ToString(format, CultureInfo.CurrentCulture),
Normal.Y.ToString(format, CultureInfo.CurrentCulture), Normal.Z.ToString(format, CultureInfo.CurrentCulture), D.ToString(format, CultureInfo.CurrentCulture));
}
///
/// Returns a that represents this instance.
///
/// The format provider.
///
/// A that represents this instance.
///
public string ToString(IFormatProvider formatProvider)
{
return string.Format(formatProvider, "A:{0} B:{1} C:{2} D:{3}", Normal.X, Normal.Y, Normal.Z, D);
}
///
/// Returns a that represents this instance.
///
/// The format.
/// The format provider.
///
/// A that represents this instance.
///
public string ToString(string format, IFormatProvider formatProvider)
{
return string.Format(formatProvider, "A:{0} B:{1} C:{2} D:{3}", Normal.X.ToString(format, formatProvider),
Normal.Y.ToString(format, formatProvider), Normal.Z.ToString(format, formatProvider), D.ToString(format, formatProvider));
}
///
/// Returns a hash code for this instance.
///
///
/// A hash code for this instance, suitable for use in hashing algorithms and data structures like a hash table.
///
public override int GetHashCode()
{
return Normal.GetHashCode() + D.GetHashCode();
}
///
/// Determines whether the specified is equal to this instance.
///
/// The to compare with this instance.
///
/// true if the specified is equal to this instance; otherwise, false.
///
public bool Equals(Plane value)
{
return Normal == value.Normal && D == value.D;
}
///
/// Determines whether the specified is equal to this instance.
///
/// The to compare with this instance.
///
/// true if the specified is equal to this instance; otherwise, false.
///
public override bool Equals(object value)
{
if (value == null)
return false;
if (value.GetType() != GetType())
return false;
return Equals((Plane)value);
}
#if SlimDX1xInterop
///
/// Performs an implicit conversion from to .
///
/// The value.
/// The result of the conversion.
public static implicit operator SlimDX.Plane(Plane value)
{
return new SlimDX.Plane(value.Normal, value.D);
}
///
/// Performs an implicit conversion from to .
///
/// The value.
/// The result of the conversion.
public static implicit operator Plane(SlimDX.Plane value)
{
return new Plane(value.Normal, value.D);
}
#endif
#if XnaInterop
///
/// Performs an implicit conversion from to .
///
/// The value.
/// The result of the conversion.
public static implicit operator Microsoft.Xna.Framework.Plane(Plane value)
{
return new Microsoft.Xna.Framework.Plane(value.Normal, value.D);
}
///
/// Performs an implicit conversion from to .
///
/// The value.
/// The result of the conversion.
public static implicit operator Plane(Microsoft.Xna.Framework.Plane value)
{
return new Plane(value.Normal, value.D);
}
#endif
}
}