// Copyright (c) Xenko contributors (https://xenko.com) and Silicon Studio Corp. (https://www.siliconstudio.co.jp) // Distributed under the MIT license. See the LICENSE.md file in the project root for more information. // // Copyright (c) 2010-2011 SharpDX - Alexandre Mutel // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. using System.Runtime.InteropServices; using System.Runtime.Serialization; namespace math { /// /// Helper class to perform Half/Float conversion. /// Code extract from paper : www.fox-toolkit.org/ftp/fasthalffloatconversion.pdf by Jeroen van der Zijp /// internal class HalfUtils { [StructLayout(LayoutKind.Explicit, Pack = 4)] private struct FloatToUint { [FieldOffset(0)] public uint UIntValue; [FieldOffset(0)] public float FloatValue; } /// /// Unpacks the specified h. /// /// The packed value. /// The float representation of the packed value. public static float Unpack(ushort h) { var conv = new FloatToUint(); conv.UIntValue = HalfToFloatMantissaTable[HalfToFloatOffsetTable[h >> 10] + (((uint)h) & 0x3ff)] + HalfToFloatExponentTable[h >> 10]; return conv.FloatValue; } /// /// Packs the specified f. /// /// The float value. /// The packed representation of the float value. public static ushort Pack(float f) { FloatToUint conv = new FloatToUint(); conv.FloatValue = f; return (ushort)(FloatToHalfBaseTable[(conv.UIntValue >> 23) & 0x1ff] + ((conv.UIntValue & 0x007fffff) >> FloatToHalfShiftTable[(conv.UIntValue >> 23) & 0x1ff])); } private static readonly uint[] HalfToFloatMantissaTable = new uint[2048]; private static readonly uint[] HalfToFloatExponentTable = new uint[64]; private static readonly uint[] HalfToFloatOffsetTable = new uint[64]; private static readonly ushort[] FloatToHalfBaseTable = new ushort[512]; private static readonly byte[] FloatToHalfShiftTable = new byte[512]; static HalfUtils() { int i; // ------------------------------------------------------------------- // Half to Float tables // ------------------------------------------------------------------- // Mantissa table // 0 => 0 HalfToFloatMantissaTable[0] = 0; // Transform subnormal to normalized for (i = 1; i < 1024; i++) { uint m = ((uint)i) << 13; uint e = 0; while ((m & 0x00800000) == 0) { e -= 0x00800000; m <<= 1; } m &= ~0x00800000U; e += 0x38800000; HalfToFloatMantissaTable[i] = m | e; } // Normal case for (i = 1024; i < 2048; i++) HalfToFloatMantissaTable[i] = 0x38000000 + (((uint)(i - 1024)) << 13); // Exponent table // 0 => 0 HalfToFloatExponentTable[0] = 0; for (i = 1; i < 63; i++) { if (i < 31) // Positive Numbers HalfToFloatExponentTable[i] = ((uint)i) << 23; else // Negative Numbers HalfToFloatExponentTable[i] = 0x80000000 + (((uint)(i - 32)) << 23); } HalfToFloatExponentTable[31] = 0x47800000; HalfToFloatExponentTable[32] = 0x80000000; HalfToFloatExponentTable[63] = 0xC7800000; // Offset table HalfToFloatOffsetTable[0] = 0; for (i = 1; i < 64; i++) HalfToFloatOffsetTable[i] = 1024; HalfToFloatOffsetTable[32] = 0; // ------------------------------------------------------------------- // Float to Half tables // ------------------------------------------------------------------- for (i = 0; i < 256; i++) { int e = i - 127; if (e < -24) { // Very small numbers map to zero FloatToHalfBaseTable[i | 0x000] = 0x0000; FloatToHalfBaseTable[i | 0x100] = 0x8000; FloatToHalfShiftTable[i | 0x000] = 24; FloatToHalfShiftTable[i | 0x100] = 24; } else if (e < -14) { // Small numbers map to denorms FloatToHalfBaseTable[i | 0x000] = (ushort)((0x0400 >> (-e - 14))); FloatToHalfBaseTable[i | 0x100] = (ushort)((0x0400 >> (-e - 14)) | 0x8000); FloatToHalfShiftTable[i | 0x000] = (byte)(-e - 1); FloatToHalfShiftTable[i | 0x100] = (byte)(-e - 1); } else if (e <= 15) { // Normal numbers just lose precision FloatToHalfBaseTable[i | 0x000] = (ushort)(((e + 15) << 10)); FloatToHalfBaseTable[i | 0x100] = (ushort)(((e + 15) << 10) | 0x8000); FloatToHalfShiftTable[i | 0x000] = 13; FloatToHalfShiftTable[i | 0x100] = 13; } else if (e < 128) { // Large numbers map to Infinity FloatToHalfBaseTable[i | 0x000] = 0x7C00; FloatToHalfBaseTable[i | 0x100] = 0xFC00; FloatToHalfShiftTable[i | 0x000] = 24; FloatToHalfShiftTable[i | 0x100] = 24; } else { // Infinity and NaN's stay Infinity and NaN's FloatToHalfBaseTable[i | 0x000] = 0x7C00; FloatToHalfBaseTable[i | 0x100] = 0xFC00; FloatToHalfShiftTable[i | 0x000] = 13; FloatToHalfShiftTable[i | 0x100] = 13; } } } } }